Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36559098

ABSTRACT

Clomiphene, a selective estrogen receptor modulator (SERM), has been used for the treatment of anovulation for more than 50 years. However, since (E)-clomiphene ((E)-Clom) and its metabolites are eliminated primarily via Cytochrome P450 (CYP) 2D6 and CYP3A4, exposure can be affected by CYP2D6 polymorphisms and concomitant use with CYP inhibitors. Thus, clomiphene therapy may be susceptible to drug-gene interactions (DGIs), drug-drug interactions (DDIs) and drug-drug-gene interactions (DDGIs). Physiologically based pharmacokinetic (PBPK) modeling is a tool to quantify such DGI and DD(G)I scenarios. This study aimed to develop a whole-body PBPK model of (E)-Clom including three important metabolites to describe and predict DGI and DD(G)I effects. Model performance was evaluated both graphically and by calculating quantitative measures. Here, 90% of predicted Cmax and 80% of AUClast values were within two-fold of the corresponding observed value for DGIs and DD(G)Is with clarithromycin and paroxetine. The model also revealed quantitative contributions of different CYP enzymes to the involved metabolic pathways of (E)-Clom and its metabolites. The developed PBPK model can be employed to assess the exposure of (E)-Clom and its active metabolites in as-yet unexplored DD(G)I scenarios in future studies.

2.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215362

ABSTRACT

Static in vitro permeation experiments are commonly used to gain insights into the permeation properties of drug substances but exhibit limitations due to missing physiologic cell stimuli. Thus, fluidic systems integrating stimuli, such as physicochemical fluxes, have been developed. However, as fluidic in vitro studies display higher complexity compared to static systems, analysis of experimental readouts is challenging. Here, the integration of in silico tools holds the potential to evaluate fluidic experiments and to investigate specific simulation scenarios. This study aimed to develop in silico models that describe and predict the permeation and disposition of two model substances in a static and fluidic in vitro system. For this, in vitro permeation studies with a 16HBE cellular barrier under both static and fluidic conditions were performed over 72 h. In silico models were implemented and employed to describe and predict concentration-time profiles of caffeine and diclofenac in various experimental setups. For both substances, in silico modeling identified reduced apparent permeabilities in the fluidic compared to the static cellular setting. The developed in vitro-in silico modeling framework can be expanded further, integrating additional cell tissues in the fluidic system, and can be employed in future studies to model pharmacokinetic and pharmacodynamic drug behavior.

3.
Pharmaceutics ; 13(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34575443

ABSTRACT

Infliximab is approved for treatment of various chronic inflammatory diseases including inflammatory bowel disease (IBD). However, high variability in infliximab trough levels has been associated with diverse response rates. Model-informed precision dosing (MIPD) with population pharmacokinetic models could help to individualize infliximab dosing regimens and improve therapy. The aim of this study was to evaluate the predictive performance of published infliximab population pharmacokinetic models for IBD patients with an external data set. The data set consisted of 105 IBD patients with 336 infliximab concentrations. Literature review identified 12 published models eligible for external evaluation. Model performance was evaluated with goodness-of-fit plots, prediction- and variability-corrected visual predictive checks (pvcVPCs) and quantitative measures. For anti-drug antibody (ADA)-negative patients, model accuracy decreased for predictions > 6 months, while bias did not increase. In general, predictions for patients developing ADA were less accurate for all models investigated. Two models with the highest classification accuracy identified necessary dose escalations (for trough concentrations < 5 µg/mL) in 88% of cases. In summary, population pharmacokinetic modeling can be used to individualize infliximab dosing and thereby help to prevent infliximab trough concentrations dropping below the target trough concentration. However, predictions of infliximab concentrations for patients developing ADA remain challenging.

4.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063963

ABSTRACT

A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.

5.
Pharmaceutics ; 12(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977559

ABSTRACT

Fentanyl is widely used for analgesia, sedation, and anesthesia both in adult and pediatric populations. Yet, only few pharmacokinetic studies of fentanyl in pediatrics exist as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling is a mechanistic approach to explore drug pharmacokinetics and allows extrapolation from adult to pediatric populations based on age-related physiological differences. The aim of this study was to develop a PBPK model of fentanyl and norfentanyl for both adult and pediatric populations. The adult PBPK model was established in PK-Sim® using data from 16 clinical studies and was scaled to several pediatric subpopulations. ~93% of the predicted AUClast values in adults and ~88% in pediatrics were within 2-fold of the corresponding value observed. The adult PBPK model predicted a fraction of fentanyl dose metabolized to norfentanyl of ~33% and a fraction excreted in urine of ~7%. In addition, the pediatric PBPK model was used to simulate differences in peak plasma concentrations after bolus injections and short infusions. The novel PBPK models could be helpful to further investigate fentanyl pharmacokinetics in both adult and pediatric populations.

6.
Pharmaceutics ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585880

ABSTRACT

Buprenorphine plays a crucial role in the therapeutic management of pain in adults, adolescents and pediatric subpopulations. However, only few pharmacokinetic studies of buprenorphine in children, particularly neonates, are available as conducting clinical trials in this population is especially challenging. Physiologically-based pharmacokinetic (PBPK) modeling allows the prediction of drug exposure in pediatrics based on age-related physiological differences. The aim of this study was to predict the pharmacokinetics of buprenorphine in pediatrics with PBPK modeling. Moreover, the drug-drug interaction (DDI) potential of buprenorphine with CYP3A4 and P-glycoprotein perpetrator drugs should be elucidated. A PBPK model of buprenorphine and norbuprenorphine in adults has been developed and scaled to children and preterm neonates, accounting for age-related changes. One-hundred-percent of the predicted AUClast values in adults (geometric mean fold error (GMFE): 1.22), 90% of individual AUClast predictions in children (GMFE: 1.54) and 75% in preterm neonates (GMFE: 1.57) met the 2-fold acceptance criterion. Moreover, the adult model was used to simulate DDI scenarios with clarithromycin, itraconazole and rifampicin. We demonstrate the applicability of scaling adult PBPK models to pediatrics for the prediction of individual plasma profiles. The novel PBPK models could be helpful to further investigate buprenorphine pharmacokinetics in various populations, particularly pediatric subgroups.

7.
Clin Pharmacokinet ; 59(9): 1119-1134, 2020 09.
Article in English | MEDLINE | ID: mdl-32166575

ABSTRACT

BACKGROUND: Nicotine, the pharmacologically active substance in both tobacco and many electronic cigarette (e-cigarette) liquids, is responsible for the addiction that sustains cigarette smoking. With 8 million deaths worldwide annually, smoking remains one of the major causes of disability and premature death. However, nicotine also plays an important role in smoking cessation strategies. OBJECTIVES: The aim of this study was to develop a comprehensive, whole-body, physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model of nicotine and its major metabolite cotinine, covering various routes of nicotine administration, and to simulate nicotine brain tissue concentrations after the use of combustible cigarettes, e-cigarettes, nicotine gums, and nicotine patches. METHODS: A parent-metabolite, PBPK/PD model of nicotine for a non-smoking and a smoking population was developed using 91 plasma and brain tissue concentration-time profiles and 11 heart rate profiles. Among others, cytochrome P450 (CYP) 2A6 and 2B6 enzymes were implemented, including kinetics for CYP2A6 poor metabolizers. RESULTS: The model is able to precisely describe and predict both nicotine plasma and brain tissue concentrations, cotinine plasma concentrations, and heart rate profiles. 100% of the predicted area under the concentration-time curve (AUC) and maximum concentration (Cmax) values meet the twofold acceptance criterion with overall geometric mean fold errors of 1.12 and 1.15, respectively. The administration of combustible cigarettes, e-cigarettes, nicotine patches, and nicotine gums was successfully implemented in the model and used to identify differences in steady-state nicotine brain tissue concentration patterns. CONCLUSIONS: Our PBPK/PD model may be helpful in further investigations of nicotine dependence and smoking cessation strategies. As the model represents the first nicotine PBPK/PD model predicting nicotine concentration and heart rate profiles after the use of e-cigarettes, it could also contribute to a better understanding of the recent increase in youth e-cigarette use.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine/pharmacokinetics , Smoking Cessation , Tobacco Use Cessation Devices , Cotinine/blood , Humans
8.
Clin Pharmacol Ther ; 108(1): 116-125, 2020 07.
Article in English | MEDLINE | ID: mdl-31910286

ABSTRACT

The US Food and Drug Administration (FDA) lists 22 medications as clinical inhibitors of cytochrome P450 2D6 isoenzyme, with classifications of strong, moderate, and weak. It is accepted that strong inhibitors result in nearly null enzymatic activity, but reduction caused by moderate and weak inhibitors is less well characterized. The objective was to identify if the classification of currently listed FDA moderate and weak inhibitors is supported by publicly available primary literature. We conducted a literature search and reviewed product labels for area under the plasma concentration-time curve (AUC) fold-changes caused by inhibitors in humans and identified 89 inhibitor-substrate pairs. Observed AUC fold-change of the substrate was used to create an observed inhibitor classification per FDA-defined AUC fold-change thresholds. We then compared the observed inhibitor classification with the classification listed in the FDA Table of Inhibitors. We found 62% of the inhibitors within the pairs matched the listed FDA classification. We explored reasons for discordance and suggest modifications to the FDA table of clinical inhibitors for cimetidine, desvenlafaxine, and fluvoxamine.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors/classification , Cytochrome P-450 CYP2D6/drug effects , Area Under Curve , Cimetidine/classification , Cimetidine/pharmacokinetics , Cimetidine/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6 Inhibitors/pharmacokinetics , Desvenlafaxine Succinate/classification , Desvenlafaxine Succinate/pharmacokinetics , Desvenlafaxine Succinate/pharmacology , Fluvoxamine/classification , Fluvoxamine/pharmacokinetics , Fluvoxamine/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...