Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(12)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36559265

ABSTRACT

Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 µg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.

2.
Prep Biochem Biotechnol ; 52(7): 800-808, 2022.
Article in English | MEDLINE | ID: mdl-34751636

ABSTRACT

The magnetic particles modified with silicon dioxide (SiO2) and amino groups (-NH2), as well as the magnetic particles modified with human serum albumin (HSA) were synthesized using the approaches we developed before and characterized by physico-chemical methods in this study. Plasminogen was chosen as a model protein since plasminogen plays a major role in the fibrinolytic system and plasminogen level correlates with different pathologies and conditions. For the first time it has been carried out qualitative and quantitative assessment of plasminogen nonspecific binding (noncovalent adsorption) by the particles in buffer and plasma solutions. The fibrinolytic activity of plasminogen on the surface of the particles has been measured by the aid of commercially available kits and appeared to be 28-30% of its initial value. Plasminogen desorption from the surface of particles was studied in phosphate buffer with NaCl and ε-aminocaproic acid. Despite nonspecific plasminogen binding is an undesirable process, the data obtained is valuable for further modification of particles for high-specific proteins extraction from biological fluids or transport of plasminogen by the particles. The perspectives of particles modified with SiO2 and -NH2, and particles modified with HSA for isolation of protein analytes and their quantitative assessment thereafter have been discussed.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Adsorption , Humans , Magnetic Iron Oxide Nanoparticles , Magnetite Nanoparticles/chemistry , Plasminogen/metabolism , Proteins , Serum Albumin, Human , Silicon Dioxide/chemistry
3.
Int J Biol Macromol ; 194: 654-665, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34813783

ABSTRACT

Human serum albumin (HSA) is a very well-characterized protein, which has already been used for many biocompatible coatings. We hypothesized binding between HSA and magnetic iron oxide nanoparticles (MNPs) as well as HSA coating stability to be pH- and ionic strength-dependent. The impact of phosphate buffer on protein coating was studied at varying pH (6.0, 6.6, and 7.5) and ionic strengths (0.15 and 0.30 M NaCl) using different physicochemical methods. In addition, the stability of HSA coatings on MNPs was studied by means of UV/visible spectrophotometry, dynamic light scattering, and electron magnetic resonance. We used differential scanning calorimetry (DSC) to determine the differences in the change of enthalpies and denaturation temperatures of HSA in various buffer conditions and on the surface of the particles. The binding thermodynamics of HSA and MNPs were determined by isothermal titration calorimetry (ITC), and it was also dependent on pH and ionic strength. The stability of adsorbed layer on MNPs decreases with increasing pH [from weakly acidic (pH 6.0-6.6) to slightly alkaline (pH 7.5)], as well as with an increase of ionic strength. This study develops stable HSA coating on MNPs which might be applied to a wide range of biomedical applications.


Subject(s)
Magnetic Iron Oxide Nanoparticles/chemistry , Serum Albumin, Human/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Thermodynamics
4.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140300, 2020 01.
Article in English | MEDLINE | ID: mdl-31676449

ABSTRACT

The study is devoted to the oxidative modification of immunoglobulin G (IgG) on the surface of peroxidase-like iron oxide magnetic nanoparticles (MNPs) under conditions of induced reactive oxygen species (ROS) generation and without them. A pronounced change of thermodynamic parameters of denaturation has been detected for IgG in solutions containing MNPs under hydrogen peroxide action during 24 h of incubation. Dynamic light scattering measurements and UV-Visible spectrophotometry have been used to show aggregation in these solutions. Ferromagnetic resonance (FMR) was used to compare IgG coating thickness on individual MNPs under conditions of induced ROS generation and without them. The similarity between IgG adsorption on MNPs under these conditions after 24 h of incubation has been confirmed by the fluorescence measurements. The sites of IgG oxidative modifications that take place on MNPs surface and some evidences of the influence of oxidative modification and adsorption on the chemical structure of IgG were revealed by HPLC MS/MS analysis.


Subject(s)
Hydrogen Peroxide/chemistry , Immunoglobulin G/chemistry , Magnetite Nanoparticles/chemistry , Adsorption , Chromatography, High Pressure Liquid , Peroxidases/chemistry , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...