Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892380

ABSTRACT

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Subject(s)
Calcium , Muscle Fibers, Fast-Twitch , Simendan , Simendan/pharmacology , Animals , Mice , Calcium/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Contraction/drug effects , Sarcomeres/metabolism , Sarcomeres/drug effects , Male , Myofibrils/metabolism , Myofibrils/drug effects
2.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496975

ABSTRACT

An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.


Subject(s)
Calcium , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Muscle Fibers, Skeletal/physiology , Muscle Contraction/physiology , Biomechanical Phenomena
3.
Chem Commun (Camb) ; 49(67): 7397-9, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23863995

ABSTRACT

We applied 14-mer 2'-OMe RNAs as inhibitors of selected micro RNAs. To improve their properties, we introduced a trimethoxystilbene residue at the 5'-terminus and three 2'-fluoro-2'-deoxynucleotides at the 3'-terminus to obtain potent inhibitors, whose mismatch discrimination is substantially better than that of typically applied >18-mers.


Subject(s)
MicroRNAs/antagonists & inhibitors , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Stilbenes/chemistry , Stilbenes/pharmacology , Base Sequence , Down-Regulation/drug effects , HeLa Cells , Humans , MicroRNAs/chemistry
4.
Inorg Chem ; 50(23): 12010-7, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22047611

ABSTRACT

Photocatalytic activity of a photosensitizer (PS) in an oligodeoxyribonucleotide duplex 5'-PS~ODN1/ODN2~Q-3' is inhibited because of close proximity of a quencher Q. The ODN2 in this duplex is selected to be longer than the ODN1. Therefore, in the presence of a nucleic acid (analyte), which is fully complementary to the ODN2 strand, the duplex is decomposed with formation of an analyte/ODN2~Q duplex and a catalytically active, single stranded PS~ODN1. In this way the catalytic activity of the PS can be controlled by the specific nucleic acids. We applied this reaction earlier for the amplified detection of ribonucleic acids in live cells (Arian, D.; Cló, E.; Gothelf, K.; Mokhir, A. Chem.-Eur. J.2010, 16(1), 288). As a photosensitizer (PS) we used In(3+)(pyropheophorbide-a)chloride and as a quencher (Q)--Black-Hole-Quencher-3 (BHQ-3). The In(3+) complex is a highly active photocatalyst in aqueous solution. However, it can coordinate additional ligands containing thiols (e.g., proteins, peptides, and aminoacids), that modulate properties of the complex itself and of the corresponding bio- molecules. These possible interactions can lead to undesired side effects of nucleic acid controlled photocatalysts (PS~ODN1/ODN2∼Q) in live cells. In this work we explored the possibility to substitute the In(3+) complex for those ones of divalent metal ions, Zn(2+) and Pd(2+), which exhibit lower or no tendency to coordinate the fifth ligand. We found that one of the compounds tested (Pd(pyropheophorbide-a) is as potent and as stable photosensitizer as its In(3+) analogue, but does not coordinate additional ligands that makes it more suitable for cellular applications. When the Pd complex was introduced in the duplex PS~ODN1/ODN2~Q as a PS, its photocatalytic activity could be controlled by nucleic acids as efficiently as that of the corresponding In(3+) complex.


Subject(s)
Chlorophyll/analogs & derivatives , Nucleic Acids/chemistry , Organometallic Compounds/chemistry , Photochemical Processes , Catalysis , Chlorophyll/chemistry , Nucleic Acid Hybridization , Oligodeoxyribonucleotides/chemistry
5.
J Am Chem Soc ; 133(11): 3972-80, 2011 Mar 23.
Article in English | MEDLINE | ID: mdl-21344887

ABSTRACT

We developed a (1)O(2)-sensitive linker based on a 9,10-dialkoxyanthracene structure. Its cleavage in the presence of (1)O(2) is quick and high-yielding. A phosphoramidite containing this fragment was prepared and coupled to a variety of molecular fragments, including nucleosides, fluorescent dyes, and a cholesteryl derivative. On the basis of this building block we prepared a fluorogenic probe for monitoring (1)O(2) in live mammalian cells and visible-light-activated "caged" oligodeoxyribonucleotides. In particular, the fluorogenic (1)O(2) probe is a conjugate of 4,7,4',7'-tetrachlorofluorescein and N,N,N',N'-tetramethylrhodamine coupled to each other via the (1)O(2)-sensitive linker. Fluorescence of the dyes in this probe is quenched. In the presence of (1)O(2), the linker is cleaved with formation of 9,10-anthraquinone and two strongly fluorescent dyes: 4,7,4',7'-tetrachlorofluorescein and N,N,N',N'-tetramethylrhodamine derivatives. We observed that the fluorescence of the probe correlates with the amount of (1)O(2) present in solution. The red-light-activated "caged" oligodeoxyribonucleotides are stable duplexes, which consist of an unmodified strand and a blocker strand. The (1)O(2)-sensitive linker is introduced in the interior of the blocker strand. Upon exposure of the duplex to red light in the presence of In(3+)(pyropheophorbide-a) chloride, the linker is cleaved with formation of the unstable duplex structure. This product decomposes spontaneously, releasing the unmodified strand, which can bind to the complementary target nucleic acid. This uncaging reaction is high-yielding. In contrast, previously reported visible-light-activated reagents are uncaged inefficiently due to competing reactions of sulfoxide and disulfide formation.


Subject(s)
Anthracenes/chemistry , Oxygen/chemistry , Chromatography, High Pressure Liquid , Fluorescent Dyes/chemistry , HL-60 Cells , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
ACS Nano ; 4(12): 7475-80, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21090671

ABSTRACT

DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force , Nucleic Acid Conformation , Photosensitizing Agents/pharmacology , Singlet Oxygen/chemistry , Models, Molecular , Nanostructures/chemistry
7.
Bioorg Med Chem Lett ; 16(10): 2781-5, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16495057

ABSTRACT

Two ligand-intercalator-peptide nucleic acid conjugates (L-NADI-PNAs) have been synthesized. Affinity of these conjugates to their complementary DNAs was found to be affected by Zn(2+). The magnitude of this effect could be controlled by a variation of the ligand. Upon binding Zn(2+) the L-NADI-PNAs form positively charged ZnL complexes, which interact with the negatively charged DNA backbone. This electrostatic interaction stabilizes PNA/DNA duplexes. It has been found that Zn(2+) dependent stabilization takes place only if the ZnL complex has a higher total positive charge than the ligand. Linear correlation has been observed between Zn(2+) induced stabilization of PNA/DNA duplexes and difference of charges of the ZnL complex and the ligand.


Subject(s)
DNA/chemistry , Peptide Nucleic Acids/chemistry , Zinc/chemistry , Mass Spectrometry , Molecular Probes
8.
Inorg Chem ; 43(24): 7868-76, 2004 Nov 29.
Article in English | MEDLINE | ID: mdl-15554652

ABSTRACT

The three novel heterotrimetallic complexes [Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2(NCS)2 (1), [Ni(H2L)2][CuCo(L)2(H2L)(NCS)]2Br2.2H2O (2), and [CuCoCd(H2L)2(L)2(NCS)Br2].CH3OH (3) have been prepared using zerovalent copper; cobalt thiocyanate; nickel thiocyanate (1), nickel bromide (2), or cadmium bromide (3); and methanol solutions of diethanolamine in air. The most prominent feature of the structures of 1 and 2 is the formation of the "pentanuclear"aggregate [[Ni(H2L)2][CoCu(L)2(H2L)(NCS)]2]2+ made up of two neutral [CoCu(L)2(H2L)(NCS)] units and the previously unknown cation [Ni(H2L)2]2+ "glued together" by strong complementary hydrogen bonds. With Cd2+ instead of Ni2+, a different structure is obtained: the [CoCu(L)2(H2L)(NCS)] unit is now linked to the Cd center through coordination of the oxygens of L groups on the Co atom to form the discrete heterotrimetallic molecular species 3. Cryomagnetic measurements of the compounds show that, in all cases, the magnetic behavior is paramagnetic; the polycrystalline EPR spectra contain signals due to monomeric copper species only. At the same time, the EPR spectra of frozen DMF and methanol solutions of 1-3 reveal the presence of triplet-state species that can be generated only by a coupling of the Cu2+ centers within a dimer. The species responsible for the appearance of transitions within the triplet state are thought to be Cu(II) dimeric centers formed by aggregation of two [CuCo(H2L)(L)2] fragments of 1-3 present in solution. The residual monomeric spectra in the g approximately 2 region are indicative of the existence of an equilibrium in solution between the dimeric and monomeric Cu(II) centers in aggregated and free [CuCo(H2L)(L)2] fragments, respectively, with varying degrees of stability. The fragmentation process of 1-3 in solution was screened by electrospray ionization mass spectrometry.

10.
Chem Commun (Camb) ; (7): 880-1, 2004 Apr 07.
Article in English | MEDLINE | ID: mdl-15045110

ABSTRACT

The nature of the allosteric metal ion M (Pd2+ or Pt2+) in complexes ML of a polytopic ligand controls uptake of additional Cu2+ ions; while [Cu2Pd(L-4H)]2+ is a highly active catalyst for phosphodiester cleavage, [CuPt(L-4H)] is inactive.

SELECTION OF CITATIONS
SEARCH DETAIL
...