Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 68(5): 991-1004, 2024 May.
Article in English | MEDLINE | ID: mdl-38528211

ABSTRACT

An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.


Subject(s)
Chlorophyll , Garlic , Ozone , Photosynthesis , Plant Leaves , Ozone/pharmacology , Garlic/drug effects , Chlorophyll/metabolism , Chlorophyll/analysis , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Antioxidants/metabolism , Catalase/metabolism , Peroxidase/metabolism , Plant Stomata/drug effects , Plant Stomata/physiology , Air Pollutants , Ascorbic Acid/analysis
2.
Biotechnol Lett ; 36(5): 1037-41, 2014 May.
Article in English | MEDLINE | ID: mdl-24375233

ABSTRACT

We have developed marker-free transgenic wheat using a transcription factor, AtDREB1A cloned from Arabidopsis. Southern hybridization confirmed a transgenic event with a single copy insertion. PCR analysis of the T1 plants showed four were positive only for AtDREB1A. A T1 plant (HRCB3#17-37) was marker-free and had good expression of drought tolerance in comparison with untransformed plants. The leaf relative water content of this T1 transgenic plant was 12-15% higher than that of the wild type during stress with an 8% higher yield under water deficit conditions compared with wild type plants.


Subject(s)
Droughts , Plants, Genetically Modified/physiology , Stress, Physiological/physiology , Triticum/physiology , Arabidopsis Proteins/genetics , Plant Leaves/chemistry , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Triticum/genetics , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...