Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int Wound J ; 19(4): 871-887, 2022 May.
Article in English | MEDLINE | ID: mdl-34713964

ABSTRACT

A growing number of studies report dermal malignancies mimicking diabetic foot ulcers (DFUs). We reviewed clinical cases reporting malignant tumours misdiagnosed to be DFU aiming to identify factors contributing to misdiagnosis. We systematically searched in PubMed for clinical cases reporting on misdiagnosis of DFU in patients with cancer. A chi-square analysis was conducted to show the link between the incidence of initial DFU misdiagnosis and patient age, gender and wound duration. Lesions misdiagnosed to be DFU were subsequently diagnosed as melanoma (68% of the cases), Kaposi's sarcoma (14%), squamous cell carcinoma (11%), mantle cell lymphoma, and diffuse B-cell lymphoma (both by 4%). Older age (≥65 years) was associated with a significantly increased risk of malignancy masked as DFU (OR: 2.452; 95% CI: 1.132 to 5.312; P value = .019). The risk of such suspicion in older patients (age ≥ 65 years) was 145% higher than in younger patients (age < 65 years). Clinicians should maintain a high level of awareness towards potentially malignant foot lesions in elderly patients with diabetes (age ≥ 65).


Subject(s)
Diabetes Mellitus , Diabetic Foot , Foot Ulcer , Skin Neoplasms , Adult , Aged , Diabetic Foot/complications , Diagnostic Errors , Foot , Humans , Incidence , Skin Neoplasms/complications , Skin Neoplasms/diagnosis
2.
Biosci Rep ; 40(8)2020 08 28.
Article in English | MEDLINE | ID: mdl-29500317

ABSTRACT

Transketolase catalyzes the transfer of a glycolaldehyde residue from ketose (the donor substrate) to aldose (the acceptor substrate). In the absence of aldose, transketolase catalyzes a one-substrate reaction that involves only ketose. The mechanism of this reaction is unknown. Here, we show that hydroxypyruvate serves as a substrate for the one-substrate reaction and, as well as with the xylulose-5-phosphate, the reaction product is erythrulose rather than glycolaldehyde. The amount of erythrulose released into the medium is equimolar to a double amount of the transformed substrate. This could only be the case if the glycol aldehyde formed by conversion of the first ketose molecule (the product of the first half reaction) remains bound to the enzyme, waiting for condensation with the second molecule of glycol aldehyde. Using mass spectrometry of catalytic intermediates and their subsequent fragmentation, we show here that interaction of the holotransketolase with hydroxypyruvate results in the equiprobable binding of the active glycolaldehyde to the thiazole ring of thiamine diphosphate and to the amino group of its aminopyrimidine ring. We also show that these two loci can accommodate simultaneously two glycolaldehyde molecules. It explains well their condensation without release into the medium, which we have shown earlier.


Subject(s)
Pentosephosphates/metabolism , Pyruvates/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Tetroses/metabolism , Transketolase/metabolism , Binding Sites , Catalytic Domain , Kinetics , Molecular Dynamics Simulation , Pentosephosphates/chemistry , Protein Binding , Protein Conformation , Pyruvates/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Substrate Specificity , Tandem Mass Spectrometry , Tetroses/chemistry , Transketolase/chemistry
3.
Front Genet ; 10: 310, 2019.
Article in English | MEDLINE | ID: mdl-31031800

ABSTRACT

The goal of this work was to determine the effect of nonablative syngeneic transplantation of young bone marrow (BM) to laboratory animals (mice) of advanced age upon maximum duration of their lifespan. To do this, transplantation of 100 million nucleated cells from BM of young syngeneic donors to an old nonablated animal was performed at the time when half of the population had already died. As a result, the maximum lifespan (MLS) increased by 28 ± 5%, and the survival time from the beginning of the experiment increased 2.8 ± 0.3-fold. The chimerism of the BM 6 months after the transplantation was 28%.

4.
Cytotherapy ; 20(3): 361-374, 2018 03.
Article in English | MEDLINE | ID: mdl-29397307

ABSTRACT

BACKGROUND: Menstrual blood is only recently and still poorly studied, but it is an abundant and noninvasive source of highly proliferative mesenchymal stromal cells (MSCs). However, no appropriate isolation method has been reported due to its high viscosity and high content of clots and desquamated epithelium. METHODS: We studied three different isolation approaches and their combinations: ammonium-containing lysing buffer, distilled water and gradient-density centrifugation. We tested the proliferative capacity, morphology, surface markers and pluripotency of the resulting cells. RESULTS: Our isolation method yields up to four million nucleated cells per milliliter of initial blood, of which about 0.2-0.3% are colony-forming cells expressing standard mesenchymal markers CD90, CD105 and CD73, but not expressing CD45, CD34, CD117, CD133 or HLA-G. The cells have high proliferative potential (doubling in 26 h) and the ability to differentiate into adipocytes and osteocytes. Early endometrial MSCs (eMSCs) express epithelial marker cytokeratin 7 (CK7). CK7 is easily induced in later passages in a prohepatic environment. We show for the first time that a satisfactory and stable yield of eMSCs is observed throughout the whole menstrual period (5 consecutive days) of a healthy woman. DISCUSSION: The new cost/yield adequate method allows isolation from menstrual blood a relatively homogenous pool of highly proliferative MSCs, which seem to be the best candidates for internal organ therapy due to their proepithelial background (early expression of CK7 and its easy induction in later passages) and for mass cryobanking due to their high yield and availability.


Subject(s)
Cell Separation/methods , Endometrium/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Adipocytes/cytology , Adipocytes/physiology , Antigens, CD/metabolism , Biomarkers/metabolism , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Female , Humans , Osteocytes/cytology , Osteocytes/physiology
5.
Biochim Biophys Acta ; 1864(3): 280-282, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26708478

ABSTRACT

We studied the influence of the acceptor substrate of transketolase on the activity of the enzyme in the presence of reductants. Ribose-5-phosphate in the presence of cyanoborohydride decreased the transketolase catalytic activity. The inhibition is caused by the loss of catalytic function of the coenzyme-thiamine diphosphate. Similar inhibitory effect was observed in the presence of NADPH. This could indicate its possible regulatory role not only towards transketolase, but also towards the pentose phosphate pathway of carbohydrate metabolism overall, taking into account the fact that it inhibits not only transketolase but also another enzyme of the pentose phosphate pathway--glucose 6-phosphate dehydrogenase [Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle, Biochem. J. 138 (1974) 425-435].


Subject(s)
Pentose Phosphate Pathway , Ribosemonophosphates/chemistry , Thiamine Pyrophosphate/chemistry , Transketolase/chemistry , Borohydrides/chemistry , Carbohydrate Metabolism , Liver/chemistry , Liver/enzymology , NADP/chemistry , Reducing Agents/chemistry , Saccharomyces cerevisiae , Substrate Specificity , Thiamine Pyrophosphate/metabolism , Transketolase/antagonists & inhibitors , Transketolase/metabolism
6.
Front Genet ; 4: 144, 2013.
Article in English | MEDLINE | ID: mdl-23967009

ABSTRACT

Tissue renewal is a well-known phenomenon by which old and dying-off cells of various tissues of the body are replaced by progeny of local or circulating stem cells (SCs). An interesting question is whether donor SCs are capable to prolong the lifespan of an aging organism by tissue renewal. In this work, we investigated the possible use of bone marrow (BM) SC for lifespan extension. To this purpose, chimeric C57BL/6 mice were created by transplanting BM from young 1.5-month-old donors to 21.5-month-old recipients. Transplantation was carried out by means of a recently developed method which allowed to transplant without myeloablation up to 1.5 × 10(8) cells, that is, about 25% of the total BM cells of the mouse. As a result, the mean survival time, counting from the age of 21.5 months, the start of the experiment, was +3.6 and +5.0 (±0.1) months for the control and experimental groups, respectively, corresponding to a 39 ± 4% increase in the experimental group over the control. In earlier studies on BM transplantation, a considerably smaller quantity of donor cells (5 × 10(6)) was used, about 1% of the total own BM cells. The recipients before transplantation were exposed to a lethal (for control animals) X-ray dose which eliminated the possibility of studying the lifespan extension by this method.

7.
FEBS Lett ; 567(2-3): 270-4, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15178335

ABSTRACT

Data from site-directed mutagenesis and X-ray crystallography show that His103 of holotransketolase (holoTK) does not come into contact with thiamin diphosphate (ThDP) but stabilizes the transketolase (TK) reaction intermediate, alpha,beta-dihydroxyethyl-thiamin diphosphate, by forming a hydrogen bond with the oxygen of its beta-hydroxyethyl group [Eur. J. Biochem. 233 (1995) 750; Proc. Natl. Acad. Sci. USA 99 (2002) 591]. We studied the influence of His103 mutation on ThDP-binding and enzymatic activity. It was found that mutation does not affect the affinity of the coenzyme to apotransketolase (apoTK) in the presence of Ca(2+) (a cation found in the native holoenzyme) but changes all the kinetic parameters of the ThDP-apoTK interaction in the presence of Mg(2+) (a cation commonly used in ThDP-dependent enzymes studies). It was concluded that the structures of TK active centers formed in the presence of Mg(2+) and Ca(2+) are not identical. Mutation of His103 led to a significant acceleration of the one-substrate reaction but a slow down of the two-substrate reaction so that the rates of both types of catalysis became equal. Our results provide evidence for the intermediate-stabilizing function of His103.


Subject(s)
Saccharomyces cerevisiae/enzymology , Transketolase/genetics , Transketolase/metabolism , Alanine/genetics , Amino Acid Substitution , Binding Sites , Calcium/chemistry , Calcium/metabolism , Dimerization , Histidine/genetics , Holoenzymes/chemistry , Holoenzymes/metabolism , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Mutagenesis, Site-Directed , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Substrate Specificity , Thiamine Pyrophosphate/metabolism
8.
Proteins ; 56(2): 338-45, 2004 Aug 01.
Article in English | MEDLINE | ID: mdl-15211516

ABSTRACT

New and previously published data on a variety of ThDP-dependent enzymes such as baker's yeast transketolase, yeast pyruvate decarboxylase and pyruvate dehydrogenase from pigeon breast muscle, bovine heart, bovine kidney, Neisseria meningitidis and E. coli show their spectral sensitivity to ThDP binding. Although ThDP-induced spectral changes are different for different enzymes, their universal origin is suggested as being caused by the intrinsic absorption of the pyrimidine ring of ThDP, bound in different tautomeric forms with different enzymes. Non-enzymatic models with pyrimidine-like compounds indicate that the specific protein environment of the aminopyrimidine ring of ThDP determines its tautomeric form and therefore the changeable features of the inducible effect. A polar environment causes the prevalence of the aminopyrimidine tautomeric form (short wavelength region is affected). For stabilization of the iminopyrimidine tautomeric form (both short- and long-wavelength regions are affected) two factors appear essential: (i) a nonpolar environment and (ii) a conservative carboxyl group of a specific glutamate residue interacting with the N1' atom of the aminopyrimidine ring. The two types of optical effect depend in a different way upon the pH, in full accordance with the hypothesis tested. From these studies it is concluded that the inducible optical rotation results from interaction of the aminopyrimidine ring with its asymmetric environment and is defined by the protonation state of N1' and the 4'-nitrogen.


Subject(s)
Circular Dichroism , Spectrophotometry, Ultraviolet , Thiamine Pyrophosphate/chemistry , Animals , Bacterial Proteins/chemistry , Cattle , Computer Simulation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lipase , Models, Molecular , Myocardium/enzymology , Neisseria meningitidis/enzymology , Pyrimidines/chemistry , Pyruvate Decarboxylase/chemistry , Pyruvate Dehydrogenase (Lipoamide)/chemistry , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Transketolase/chemistry
9.
Biochemistry ; 42(20): 6259-63, 2003 May 27.
Article in English | MEDLINE | ID: mdl-12755630

ABSTRACT

Evidence for the NADH-modulated formation of a complex between alpha-glycerol-3-phosphate dehydrogenase and l-lactate dehydrogenase was reported [Yong, H., Thomas, G. A., and Peticolas, W. L. (1993) Biochemistry 32, 11124-11131]. This NADH-modulated association suggested a mechanism of potentially great importance to enzyme modulation and the controversial phenomena of direct NADH channeling. In the present paper, we reproduce with additional controls the experiments described by Yong et al. ((1993) Biochemistry 32, 11124-11131). Our results conclusively demonstrate the absence of detectable association between alpha-glycol-3-phosphate dehydrogenase and l-lactate dehydrogenase.


Subject(s)
Glycerolphosphate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/metabolism , Animals , Chromatography, Gel/methods , Glycerolphosphate Dehydrogenase/chemistry , In Vitro Techniques , L-Lactate Dehydrogenase/chemistry , Macromolecular Substances , NAD/chemistry , NAD/metabolism , Rabbits , Sus scrofa
10.
Biochem Biophys Res Commun ; 294(1): 155-60, 2002 May 31.
Article in English | MEDLINE | ID: mdl-12054756

ABSTRACT

It has long been known that formation of a catalytically active holotransketolase from the apoenzyme and coenzyme (thiamin diphosphate) is accompanied by the appearance of a new band, in both the absorption and CD spectra. Binding and subsequent conversion of the substrates bring about changes in this band's intensity. The observation of these changes allows the investigator to monitor the coenzyme-to-apoenzyme binding and the conversion of substrates during the transketolase reaction and thus to kinetically characterize its individual steps. The origin of the thiamin diphosphate induced absorption band has been postulated to be resulted from formation of a charge transfer complex or alternatively from an induced conformational transition of the enzyme. The latter brings aromatic amino acid residues into close proximity and generates the absorption. However, X-ray crystallographic and enzyme point mutation experiments cast doubts on both of these hypotheses. Here we show that the binding of thiamin diphosphate to the apotransketolase leads to the conversion of the 4'-amino tautomeric form of its aminopyrimidine ring into the N(1')H-imino tautomeric form. This imino form emerges as a result of the coenzyme's aminopyrymidine ring incorporation into the hydrophobic pocket of the transketolase active center and is stabilized through the interactions with Glu418 and Phe445 residues. The N(1')H-imino tautomeric form of thiamin diphosphate is thought to be the origin of the holotransketolase absorption band induced through the coenzyme binding.


Subject(s)
Thiamine Pyrophosphate/metabolism , Transketolase/metabolism , Catalysis , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae/enzymology , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...