Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 308: 119710, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35798193

ABSTRACT

The present study aimed to evaluate biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine (ATZ). The mussels were exposed to environmentally-relevant concentrations of ATZ (0, 0.02 and 0.2 mg/L) and a high concentration (2 mg/L) for 0, 7, 14, 21 and 28 days. Tissues comprising male and female gonads, digestive glands and gills were collected and assessed for ethoxyresorufin-O-deethylase (EROD) activity, glutathione S-transferase (GST) activity, multixenobiotic resistance mechanism (MXR), histopathological responses, DNA fragmentation and bioaccumulation of ATZ and its transformation derivatives, desethylatrazine (DEA) and desisopropylatrazine (DIA). Additionally, circulating estradiol levels were determined. It appeared that ATZ did not cause significant changes in activities of EROD, GST and MXR. There were no apparent ATZ-mediated histopathological effects in the tissues, with the exception of the male gonads exhibiting aberrant aggregation of germ cells in the ATZ-treated mussels. Contrarily, ATZ caused significant DNA fragmentation in all tissues of the treated animals in dose- and time-dependent manners. In general, the circulating estradiol levels were higher in the females than in the males. However, ATZ-treated animals did not show significant alterations in the hormonal levels, as compared with those of the untreated animals. Herein, we showed for the first time differentially spatiotemporal distribution patterns of bioaccumulation of ATZ, DEA and DIA, with ATZ and DEA detectable in the gonads of both sexes, DEA and DIA in the digestive glands and only DEA in the gills. The differential distribution patterns of bioaccumulation of ATZ and its derivatives among the tissues point to different pathways and tissue capacity in transforming ATZ into its transformation products. Taken together, the freshwater mussel H. bialata was resistant to ATZ likely due to their effective detoxification. However, using DNA damage as a potential biomarker, H. bialata is a promising candidate for biomonitoring aquatic toxicity.


Subject(s)
Atrazine , Bivalvia , Herbicides , Unionidae , Animals , Atrazine/toxicity , Bivalvia/metabolism , Cytochrome P-450 CYP1A1/metabolism , Estradiol , Female , Fresh Water , Herbicides/metabolism , Herbicides/toxicity , Male , Unionidae/metabolism
2.
Heredity (Edinb) ; 124(1): 182-196, 2020 01.
Article in English | MEDLINE | ID: mdl-31201385

ABSTRACT

Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.


Subject(s)
Biological Evolution , Genome, Mitochondrial , Phylogeny , Unionidae/classification , Animals , Female , Fossils , Fresh Water , Gene Order , Male , Unionidae/genetics
3.
Environ Sci Pollut Res Int ; 24(26): 21361-21374, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28741215

ABSTRACT

The acute toxicity of carbosulfan and chlorpyrifos in formulated pesticides to glochidia (larvae) of the freshwater mussel (Hyriopsis bialata Simpson, 1900) was evaluated under static conditions in moderately hard dechlorinated tap water. Measured pesticide concentrations were 26 to 34% lower than nominal concentrations; therefore, all results are expressed in terms of measured active ingredient. Carbosulfan was relatively non-toxic to the mussel larvae with median effective concentrations (EC50) of carbosulfan at 24 and 48 h greater than 0.10 mg/L. The EC50s of chlorpyrifos at 24 and 48 h were 0.083 and 0.078 mg/L, respectively (measured concentrations). The 48-h EC50 of a combined exposure to a mixture of chlorpyrifos and carbosulfan at a constant ratio of 2.9:1 was 0.0142:0.049 mg CP:CB/L. In a separate experiment, the effect of water hardness on carbosulfan, chlorpyrifos, or a combined exposure was assessed using glochidia exposed to either soft, moderately hard, or hard reconstituted water. There was no effect of water hardness on the survival of glochidia after 24- or 48-h exposure to carbosulfan. The chlorpyrifos 48-h EC50s in soft water, moderately hard water, and hard water were 0.18, 0.11, and 0.16 mg/L, respectively. The data indicate that the lowest water hardness resulted in the highest survival of glochidia, whereas an increase to moderate water hardness resulted in significantly decreased survival of glochidia (F = 15.5, P < 0.05). The EC50s of a combined exposure at 48 h in soft water, moderately hard water, and hard water were 0.124:0.044, 0.132:0.047, and 0.064:0.022 mg CP:CB/L, respectively. The data indicate that the combined toxicity was lowest at low and moderate water hardness, whereas an increase to high water hardness resulted in a significantly decreased survival of glochidia. After 48 h, the toxicity of the combined chlorpyrifos and carbosulfan exposure in soft and hard water was greater than that of chlorpyrifos alone.


Subject(s)
Bivalvia/drug effects , Carbamates/toxicity , Chlorpyrifos/toxicity , Fresh Water/chemistry , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Larva/drug effects , Toxicity Tests, Acute
4.
Mol Phylogenet Evol ; 106: 174-191, 2017 01.
Article in English | MEDLINE | ID: mdl-27621130

ABSTRACT

Freshwater mussels of the order Unionida are key elements of freshwater habitats and are responsible for important ecological functions and services. Unfortunately, these bivalves are among the most threatened freshwater taxa in the world. However, conservation planning and management are hindered by taxonomic problems and a lack of detailed ecological data. This highlights the urgent need for advances in the areas of systematics and evolutionary relationships within the Unionida. This study presents the most comprehensive phylogeny to date of the larger Unionida family, i.e., the Unionidae. The phylogeny is based on a combined dataset of 1032bp (COI+28S) of 70 species in 46 genera, with 7 of this genera being sequenced for the first time. The resulting phylogeny divided the Unionidae into 6 supported subfamilies and 18 tribes, three of which are here named for the first time (i.e., Chamberlainiini nomen novum, Cristariini nomen novum and Lanceolariini nomen novum). Molecular analyses were complemented by investigations of selected morphological, anatomical and behavioral characters used in traditional phylogenetic studies. No single morphological, anatomical or behavioral character was diagnostic at the subfamily level and few were useful at the tribe level. However, within subfamilies, many tribes can be recognized based on a subset of these characters. The geographical distribution of each of the subfamilies and tribes is also presented. The present study provides important advances in the systematics of these extraordinary taxa with implications for future ecological and conservation studies.


Subject(s)
Bivalvia/classification , Animals , Bayes Theorem , Biological Evolution , Bivalvia/genetics , Cytochromes c/classification , Cytochromes c/genetics , Cytochromes c/metabolism , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Databases, Genetic , Likelihood Functions , Phylogeny , RNA, Ribosomal, 28S/classification , RNA, Ribosomal, 28S/genetics , RNA, Ribosomal, 28S/metabolism , Sequence Analysis, DNA
5.
Food Chem ; 134(3): 1533-41, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-25005977

ABSTRACT

Trypsin from intestinal extracts of Nile tilapia (Oreochromis niloticus L.) was characterised. Three-step purification - by ammonium sulphate precipitation, Sephadex G-100, and Q Sepharose - was applied to isolate trypsin, and resulted in 3.77% recovery with a 5.34-fold increase in specific activity. At least 6 isoforms of trypsin were found in different ages. Only one major trypsin isozyme was isolated with high purity, as assessed by SDS-PAGE and native-PAGE zymogram, appearing as a single band of approximately 22.39 kDa protein. The purified trypsin was stable, with activity over a wide pH range of 6.0-11.0 and an optimal temperature of approximately 55-60 °C. The relative activity of the purified enzyme was dramatically increased in the presence of commercially used detergents, alkylbenzene sulphonate or alcohol ethoxylate, at 1% (v/v). The observed Michaelis-Menten constant (Km) and catalytic constant (Kcat) of the purified trypsin for BAPNA were 0.16 mM and 23.8 s(-1), respectively. The catalytic efficiency (Kcat/Km) was 238 s(-1) mM(-1).


Subject(s)
Cichlids/immunology , Intestinal Mucosa/metabolism , Isoenzymes/chemistry , Trypsin/chemistry , Animals , Fishes
SELECTION OF CITATIONS
SEARCH DETAIL
...