Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921387

ABSTRACT

JAK2 (Janus kinase 2) V617F, CALR (Calreticulin) exon 9, and MPL (receptor for thrombopoietin) exon 10 mutations are associated with the vast majority of Ph-negative chronic myeloproliferative neoplasms (MPNs). These mutations affect sequential stages of proliferative signal transduction and therefore, after the emergence of one type of mutation, other types should not have any selective advantages for clonal expansion. However, simultaneous findings of these mutations have been reported by different investigators in up to 10% of MPN cases. Our study includes DNA samples from 1958 patients with clinical evidence of MPN, admitted to the National Research Center for Hematology for genetic analysis between 2016 and 2019. In 315 of 1402 cases (22.6%), CALR mutations were detected. In 23 of these 315 cases (7.3%), the JAK2 V617F mutation was found in addition to the CALR mutation. In 16 from 24 (69.6%) cases, with combined CALR and JAK2 mutations, V617F allele burden was lower than 1%. A combination of JAK2 V617F with MPL W515L/K was also observed in 1 out of 1348 cases, only. JAK2 allele burden in this case was also lower than 1%. Additional mutations may coexist over the low background of JAK2 V617F allele. Therefore, in cases of detecting MPNs with a low allelic load JAK2 V617F, it may be advisable to search for other molecular markers, primarily mutations in exon 9 of CALR. The load of the combined mutations measured at different time points may indicate that, at least in some cases, these mutations could be represented by different clones of malignant cells.


Subject(s)
Calreticulin/genetics , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/genetics , Receptors, Thrombopoietin/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Male , Philadelphia Chromosome , Retrospective Studies
2.
Cytometry B Clin Cytom ; 100(3): 312-321, 2021 05.
Article in English | MEDLINE | ID: mdl-33052634

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) can present a challenge for clinicians. Multicolor flow cytometry (MFC) can aid in establishing a diagnosis. The aim of this study was to determine the optimal MFC approach for MDS. METHODS: The study included 102 MDS (39 low-grade MDS), 83 cytopenic patients without myeloid neoplastic disorders (control group), and 35 healthy donors. Bone marrow was analyzed using a six-color MFC. Analysis was conducted according to the "Ogata score," "Wells score," and the integrated flow cytometry (iFC) score. RESULTS: The respective sensitivity and specificity values were 77.5% and 90.4% for the Ogata score, 79.4% and 81.9% for the Wells score, and 87.3% and 87.6% for the iFC score. Specificity was not 100% due to deviations of MFC parameters in the control group. Patients with paroxysmal nocturnal hemoglobinuria (PNH) had higher levels of CD34+ CD7+ myeloid cells than donors. Aplastic anemia and PNH were characterized by a high proportion of CD56+ cells among CD34+ precursors and neutrophils. The proportion of MDS-related features increased with the progression of MDS. The highest number of CD34+ blasts was found in MDS with excess blasts. MDS with isolated del(5q) was characterized by a high proportion of CD34+ CD7+ cells and low granularity of neutrophils. In 39 low-grade MDS, the sensitivities were 53.8%, 61.5%, and 71.8% for Ogata score, Wells score, and iFC, respectively. CONCLUSION: The results support iFC as a useful diagnostic tool in MDS.


Subject(s)
Flow Cytometry/methods , Myelodysplastic Syndromes/diagnosis , Adult , Aged , Aged, 80 and over , Antigens, CD34/metabolism , Antigens, CD7/metabolism , Bone Marrow/metabolism , Female , Hemoglobinuria, Paroxysmal/diagnosis , Hemoglobinuria, Paroxysmal/metabolism , Humans , Male , Middle Aged , Myelodysplastic Syndromes/metabolism , Myeloid Cells/metabolism , Neutrophils/metabolism , Sensitivity and Specificity , Young Adult
3.
BMC Cancer ; 20(1): 346, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32321465

ABSTRACT

BACKGROUND: To study the histological structure and immunohistochemical (IHC) parameters of the plasmacytoma tumour substrate in patients with multiple myeloma (MM). METHODS: The study included 21 patients (10 men/11 women) aged 23 to 73 years old with newly diagnosed MM complicated by plasmacytoma. Bone plasmacytoma was diagnosed in 14 patients, and extramedullary plasmacytoma was diagnosed in 7 patients. Plasmacytoma tissue specimens were examined using a LEICA DM4000B microscope. Anti-CD56, anti-CD166, anti-CXCR4, anti-Ki-67, and anti-c-MYC antibodies were used for IHC study of plasmacytoma biopsies. RESULTS: When comparing the morphology of bone and extramedullary plasmacytoma, no significant differences were revealed; however, the substrate of extramedullary plasmacytoma was more often represented by tumour cells with an immature morphology than was the bone plasmacytoma substrate (57.1% vs. 28.6%, respectively). We revealed a significant difference in the expression of CD166 between bone and extramedullary plasmacytoma. The mean values ​​of CD166 expression in bone plasmacytoma cells were significantly higher (36.29 ± 7.61% versus 9.57 ± 8.46%, respectively; p = 0.033) than those in extramedullary plasmacytoma cells. We noticed that in extramedullary plasmacytoma cells, there were higher values for the Ki-67 index than in bone plasmacytoma cells, and this result was independent of cell morphology. CONCLUSION: The mechanisms involved in the dissemination of tumour plasma cells are currently unexplored. Even in such a small sample, some differences in expression could be identified, which may indicate that different mechanisms lead to the formation of bone and extramedullary plasmacytomas. Specifically, the expression of CD166 in extramedullary plasmacytoma cells was almost 4 times lower than that in bone plasmacytoma cells, which may indicate the involvement of CD166 in the mechanisms of bone destruction. The proliferative activity of extramedullary plasmacytoma cells was shown to be higher than that of bone plasmacytoma cells.


Subject(s)
Immunohistochemistry/methods , Multiple Myeloma/pathology , Plasmacytoma/pathology , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...