Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 56(Pt 4): 1221-1228, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37555210

ABSTRACT

This article demonstrates spatial mapping of the local and nanoscale structure of thin film objects using spatially resolved pair distribution function (PDF) analysis of synchrotron X-ray diffraction data. This is exemplified in a lab-on-chip combinatorial array of sample spots containing catalytically interesting nanoparticles deposited from liquid precursors using an ink-jet liquid-handling system. A software implementation is presented of the whole protocol, including an approach for automated data acquisition and analysis using the atomic PDF method. The protocol software can handle semi-automated data reduction, normalization and modeling, with user-defined recipes generating a comprehensive collection of metadata and analysis results. By slicing the collection using included functions, it is possible to build images of different contrast features chosen by the user, giving insights into different aspects of the local structure.

2.
J Appl Crystallogr ; 53(Pt 1): 148-158, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32047409

ABSTRACT

Molybdenum oxides and sulfides on various low-cost high-surface-area supports are excellent catalysts for several industrially relevant reactions. The surface layer structure of these materials is, however, difficult to characterize due to small and disordered MoO x domains. Here, it is shown how X-ray total scattering can be applied to gain insights into the structure through differential pair distribution function (d-PDF) analysis, where the scattering signal from the support material is subtracted to obtain structural information on the supported structure. MoO x catalysts supported on alumina nanoparticles and on zeolites are investigated, and it is shown that the structure of the hydrated molybdenum oxide layer is closely related to that of disordered and polydisperse polyoxometalates. By analysing the PDFs with a large number of automatically generated cluster structures, which are constructed in an iterative manner from known polyoxometalate clusters, information is derived on the structural motifs in supported MoO x .

SELECTION OF CITATIONS
SEARCH DETAIL
...