Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Neurosci Res ; 102(1): e25273, 2024 01.
Article in English | MEDLINE | ID: mdl-38284846

ABSTRACT

Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.


Subject(s)
Optic Nerve , White Matter , Animals , Mice , Mice, Inbred C57BL , Oligodendroglia , Neuroglia , Mammals
2.
Sci Rep ; 13(1): 8205, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37211572

ABSTRACT

Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.


Subject(s)
Ciliopathies , Retinal Degeneration , Mice , Humans , Animals , Retinal Pigment Epithelium , Cilia/physiology , Disease Models, Animal , Tumor Suppressor Proteins , Microtubule-Associated Proteins
3.
Stem Cells Int ; 2023: 6494486, 2023.
Article in English | MEDLINE | ID: mdl-36684387

ABSTRACT

Objectives: Primary cilia are conserved organelles found in polarized mammalian cells that regulate neuronal growth, migration, and differentiation. Proper cilia formation is essential during eye development. Our previous reports found that both amacrine and retinal ganglion cells (RGCs) contain primary cilia in primate and rodent retinas. However, whether primary cilia are present in the inner retina of human retinal organoids remains unknown. The purpose of this study is to characterize the primary cilia distribution in human embryonic stem cell (hESC-derived retinal organoid development. Materials and Methods: Retinal organoids were differentiated from a hESC line, harvested at various developmental timepoints (day 44-day 266), and immunostained with antibodies for primary cilia, including Arl13b (for the axoneme), AC3, and Centrin3 (for the basal body). AP2α, Prox1, GAD67, Calretinin, GFAP, PKCα, and Chx10 antibodies as well as Brn3b-promoted tdTomato expression were used to visualize retinal cell types. Results: A group of ciliated cells were present in the inner aspects of retinal organoids from day 44 to day 266 in culture. Ciliated Chx10-positive retinal progenitor cells, GFAP-positive astrocytes, and PKCα-positive rod-bipolar cells were detected later during development (day 176 to day 266). Ciliation persisted during all stages of retinal developmental in AP2α-positive amacrine cells, but it was decreased in Brn3b-positive retinal ganglion cells (RGCs) at later time points. Additionally, AC3-positive astrocytes significantly decreased during the later stages of organoid formation. Conclusions: Amacrine cells in retinal organoids retain cilia throughout development, whereas RGC ciliation gradually and progressively decreases with organoid maturation.

4.
J Comp Neurol ; 530(12): 2176-2187, 2022 08.
Article in English | MEDLINE | ID: mdl-35434813

ABSTRACT

Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.


Subject(s)
Glaucoma , Retinal Degeneration , Animals , Biomarkers/metabolism , Blindness , Cilia , Glaucoma/metabolism , Mice , Retinal Degeneration/etiology , Retinal Ganglion Cells/metabolism
5.
Invest Ophthalmol Vis Sci ; 62(9): 15, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34241625

ABSTRACT

Purpose: Primary cilia are conserved organelles found in polarized cells within the eye that regulate cell growth, migration, and differentiation. Although the role of cilia in photoreceptors is well-studied, the formation of cilia in other retinal cell types has received little attention. In this study, we examined the ciliary profile focused on the inner nuclear layer of retinas in mice and rhesus macaque primates. Methods: Retinal sections or flatmounts from Arl13b-Cetn2 tg transgenic mice were immunostained for cell markers (Pax6, Sox9, Chx10, Calbindin, Calretinin, ChaT, GAD67, Prox1, TH, and vGluT3) and analyzed by confocal microscopy. Primate retinal sections were immunostained for ciliary and cell markers (Pax6 and Arl13b). Optical coherence tomography (OCT) and ERGs were used to assess visual function of Vift88 mice. Results: During different stages of mouse postnatal eye development, we found that cilia are present in Pax6-positive amacrine cells, which were also observed in primate retinas. The cilia of subtypes of amacrine cells in mice were shown by immunostaining and electron microscopy. We also removed primary cilia from vGluT3 amacrine cells in mouse and found no significant vision defects. In addition, cilia were present in the outer limiting membrane, suggesting that a population of Müller glial cells forms cilia. Conclusions: We report that several subpopulations of amacrine cells in inner nuclear layers of the retina form cilia during early retinal development in mice and primates.


Subject(s)
Amacrine Cells/ultrastructure , Retina/growth & development , Animals , Chickens , Cilia , Electroretinography , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron , Models, Animal , Rabbits , Retina/ultrastructure , Tomography, Optical Coherence/methods
6.
Transl Vis Sci Technol ; 10(6): 10, 2021 05 03.
Article in English | MEDLINE | ID: mdl-34111256

ABSTRACT

Purpose: Steroid-induced glaucoma is a common form of secondary open angle glaucoma characterized by ocular hypertension (elevated intraocular pressure [IOP]) in response to prolonged glucocorticoid exposure. Elevated IOP occurs with increased outflow resistance and altered trabecular meshwork (TM) function. Recently, we used an optogenetic approach in TM to regulate the 5-phosphatase, OCRL, which contributes to regulating PI(4,5)P2 levels. Here, we applied this system with the aim of reversing compromised outflow function in a steroid-induced ocular hypertension mouse model. Methods: Elevated IOP was induced by chronic subconjunctival dexamethasone injections in wild-type C57Bl/6j mice. AAV2 viruses containing optogenetic modules of cryptochrome 2 (Cry2)-OCRL-5ptase and CIBN-GFP were injected into the anterior chamber. Four weeks after viral expression and dexamethasone exposure, IOP was measured by tonometer and outflow facility was measured by perfusion apparatus. Human TM cells were treated with dexamethasone, stimulated by light and treated with rhodamine-phalloidin to analyze actin structure. Results: Dexamethasone treatment elevated IOP and decreased outflow facility in wild-type mice. Optogenetic constructs were expressed in the TM of mouse eyes. Light stimulation caused CRY2-OCRL-5ptase to translocate to plasma membrane (CIBN-CAAX-GFP) and cilia (CIBN-SSTR3-GFP) in TM cells, which rescued the IOP and outflow facility. In addition, aberrant actin structures formed by dexamethasone treatment were reduced by optogenetic stimulation in human TM cells in culture. Conclusions: Subcellular targeting of inositol phosphatases to remove PIP2 represents a promising strategy to reverse defective TM function in steroid-induced ocular hypertension. Translational Relevance: Targeted modulation of OCRL may be used to decrease steroid-induced elevated IOP.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Ocular Hypertension , Animals , Glucocorticoids , Intraocular Pressure , Mice , Mice, Inbred C57BL , Ocular Hypertension/chemically induced , Optogenetics
7.
EMBO Rep ; 22(7): e52173, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33987909

ABSTRACT

Lysosomal positioning and mTOR (mammalian target of rapamycin) signaling coordinate cellular responses to nutrient levels. Inadequate nutrient sensing can result in growth delays, a hallmark of Lowe syndrome. OCRL mutations cause Lowe syndrome, but the role of OCRL in nutrient sensing is unknown. Here, we show that OCRL is localized to the centrosome by its ASH domain and that it recruits microtubule-anchoring factor SSX2IP to the centrosome, which is important in the formation of the microtubule-organizing center. Deficiency of OCRL in human and mouse cells results in loss of microtubule-organizing centers and impaired microtubule-based lysosome movement, which in turn leads to mTORC1 inactivation and abnormal nutrient sensing. Centrosome-targeted PACT-SSX2IP can restore microtubule anchoring and mTOR activity. Importantly, boosting the activity of mTORC1 restores the nutrient sensing ability of Lowe patients' cells. Our findings highlight mTORC1 as a novel therapeutic target for Lowe syndrome.


Subject(s)
Oculocerebrorenal Syndrome , Animals , Cell Cycle Proteins , Humans , Lysosomes , Mechanistic Target of Rapamycin Complex 1/genetics , Mice , Microtubule-Associated Proteins , Microtubules , Phosphoric Monoester Hydrolases
8.
J Dent ; 109: 103655, 2021 06.
Article in English | MEDLINE | ID: mdl-33798640

ABSTRACT

INTRODUCTION/OBJECTIVE: The tailored amorphous multi-porous (TAMP) material fabrication technology has led to a new class of bioactive materials possessing versatile characteristics. It has not been tested for dental applications. Thus, we aimed to assess its biocompatibility and ability to regenerate dental mineral tissue. METHODS: 30CaO-70SiO2 model TAMP discs were fabricated by a sol-gel method followed by in vitro biocompatibility testing with isolated human or mini-swine dental pulp stem cells (DPSCs). TAMP scaffolds were tested in vivo as a pulp exposure (pin-point, 1 mm, 2 mm, and entire pulp chamber roof) capping material in the molar teeth of mini-swine. RESULTS: The in vitro assays showed that DPSCs attached well onto the TAMP discs with comparable viability to those attached to culture plates. Pulp capping tests on mini-swine showed that after 4.5 months TAMP material was still present at the capping site, and mineral tissue (dentin bridge) had formed in all sizes of pulp exposure underneath the TAMP material. CONCLUSIONS: TAMP calcium silicate is biocompatible with both human and swine DPSCs in vitro and with pulp in vivo, it may help regenerate the dentin bridge after pulp exposure.


Subject(s)
Dental Pulp Capping , Regenerative Endodontics , Animals , Calcium Compounds , Dental Pulp , Silicates , Swine
9.
Sci Rep ; 11(1): 5763, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707489

ABSTRACT

The nanostructure of engineered bioscaffolds has a profound impact on cell response, yet its understanding remains incomplete as cells interact with a highly complex interfacial layer rather than the material itself. For bioactive glass scaffolds, this layer comprises of silica gel, hydroxyapatite (HA)/carbonated hydroxyapatite (CHA), and absorbed proteins-all in varying micro/nano structure, composition, and concentration. Here, we examined the response of MC3T3-E1 pre-osteoblast cells to 30 mol% CaO-70 mol% SiO2 porous bioactive glass monoliths that differed only in nanopore size (6-44 nm) yet resulted in the formation of HA/CHA layers with significantly different microstructures. We report that cell response, as quantified by cell attachment and morphology, does not correlate with nanopore size, nor HA/CHO layer micro/nano morphology, or absorbed protein amount (bovine serum albumin, BSA), but with BSA's secondary conformation as indicated by its ß-sheet/α-helix ratio. Our results suggest that the ß-sheet structure in BSA interacts electrostatically with the HA/CHA interfacial layer and activates the RGD sequence of absorbed adhesion proteins, such as fibronectin and vitronectin, thus significantly enhancing the attachment of cells. These findings provide new insight into the interaction of cells with the scaffolds' interfacial layer, which is vital for the continued development of engineered tissue scaffolds.


Subject(s)
Glass/chemistry , Nanostructures/chemistry , Osteocytes/cytology , Proteins/chemistry , Adsorption , Animals , Carbonates/chemistry , Cell Adhesion , Cell Count , Cell Line , Cell Size , Durapatite/chemistry , Mice , Nanopores , Nanostructures/ultrastructure , Protein Structure, Secondary , Serum Albumin, Bovine/chemistry , Spectroscopy, Fourier Transform Infrared
10.
J Comp Neurol ; 529(7): 1442-1455, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32939774

ABSTRACT

The mammalian visual system is composed of circuitry connecting sensory input from the retina to the processing core of the visual cortex. The two main retinorecipient brain targets, the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN), bridge retinal input and visual output. The primary cilium is a conserved organelle increasingly viewed as a critical sensor for the regulation of developmental and homeostatic pathways in most mammalian cell types. Moreover, cilia have been described as crucial for neurogenesis, neuronal maturation, and survival in the cortex and retina. However, cilia in the visual relay center remain to be fully described. In this study, we characterized the ciliation profile of the SC and dLGN and found that the overall number of ciliated cells declined during development. Interestingly, shorter ciliated cells in both regions were identified as neurons, whose numbers remained stable over time, suggesting that cilia retention is a critical feature for optimal neuronal function in SC and dLGN. Our study suggests that primary cilia are important for neuronal maturation and function in cells of the SC and dLGN.


Subject(s)
Cilia/ultrastructure , Geniculate Bodies/ultrastructure , Neurogenesis/physiology , Superior Colliculi/ultrastructure , Visual Pathways/ultrastructure , Animals , Macaca mulatta , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Neurons/ultrastructure , Visual Pathways/physiology
11.
Sci Adv ; 6(18): eaay8699, 2020 05.
Article in English | MEDLINE | ID: mdl-32494665

ABSTRACT

Glaucoma is a group of progressive optic neuropathies that cause irreversible vision loss. Although elevated intraocular pressure (IOP) is associated with the development and progression of glaucoma, the mechanisms for its regulation are not well understood. Here, we have designed CIBN/CRY2-based optogenetic constructs to study phosphoinositide regulation within distinct subcellular compartments. We show that stimulation of CRY2-OCRL, an inositol 5-phosphatase, increases aqueous humor outflow and lowers IOP in vivo, which is caused by a calcium-dependent actin rearrangement of the trabecular meshwork cells. Phosphoinositide stimulation also rescues defective aqueous outflow and IOP in a Lowe syndrome mouse model but not in IFT88fl/fl mice that lack functional cilia. Thus, our study is the first to use optogenetics to regulate eye pressure and demonstrate that tight regulation of phosphoinositides is critical for aqueous humor homeostasis in both normal and diseased eyes.

12.
Genes (Basel) ; 9(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518138

ABSTRACT

Joubert syndrome is a group of rare disorders that stem from defects in a sensory organelle, the primary cilia. Affected patients often present with disorders involving multiple organ systems, including the brain, eyes, and kidneys. Common symptoms include breathing abnormalities, mental developmental delays, loss of voluntary muscle coordination, and abnormal eye movements, with a diagnostic "molar tooth" sign observed by magnetic resonance imaging (MRI) of the midbrain. We reviewed the ocular phenotypes that can be found in patients with Joubert syndrome. Ocular motor apraxia is the most frequent (80% of patients), followed by strabismus (74%) and nystagmus (72%). A minority of patients also present with ptosis (43%), chorioretinal coloboma (30%), and optic nerve atrophy (22%). Although mutations in 34 genes have been found to be associated with Joubert syndrome, retinal degeneration has been reported in only 38% of patients. Mutations in AHI1 and CEP290, genes critical to primary cilia function, have been linked to retinal degeneration. In conclusion, Joubert syndrome is a rare pleiotropic group of disorders with variable ocular presentations.

13.
Biomed Mater ; 13(2): 025005, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29033393

ABSTRACT

Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO2-30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.


Subject(s)
Biocompatible Materials , Bone Regeneration , Glass , Osteoblasts/cytology , Osteoclasts/cytology , Tissue Scaffolds/chemistry , 3T3 Cells , Animals , Bone and Bones/pathology , Cell Adhesion , Cell Differentiation , Cell Proliferation , Coculture Techniques , Durapatite/chemistry , Mice , Microscopy, Electron, Scanning , Models, Animal , Porosity , Rats , Rats, Sprague-Dawley , Silicates/chemistry , Silicon Dioxide , Tissue Engineering/methods
14.
J Mater Sci Mater Med ; 28(10): 161, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28905286

ABSTRACT

We analyzed the biological performance of spinodally and droplet-type phase-separated 45S5 Bioglass® generated by quenching the melt from different equilibrium temperatures. MC3T3-E1 pre-osteoblast cells attached more efficiently to 45S5 Bioglass® with spinodal than to the one with droplet morphology, providing the first demonstration of the role of micro-/nano-scale on the bioactivity of Bioglass®. Upon exposure to biological solutions, phosphate buffered saline (PBS) and cell culture medium (α-MEM), a layer of hydroxyapatite (HA) formed on both glass morphologies. Although both Bioglass® varieties were incubated under identical conditions, and physico-chemical characteristics of the HA layers were similar, the adsorption magnitude of a model protein, bovine serum albumin (BSA, an abundant blood serum component) and its ß-sheet/ß-turn ratio and α-helix content were significantly higher on spinodal than droplet type Bioglass®. These results indicate that: (i) a protein layer quickly adsorbs on the surface of 45S5 Bioglass® varieties (with or without HA layer), (ii) the amount and the conformation of adsorbed proteins are guided by the glass micro-/nano-structure, and (iii) cell attachment and proliferation are influenced by the concentration and the conformation of attached proteins with a significantly better cell adhesion to spinodal type 45S5 Bioglass® substrate. Taken together, our results indicate that the biological performance of 45S5 Bioglass® can be improved further with a relatively simple, inexpensive fabrication procedure that provides a superior glass micro-/nano-structure. A simple modification to the fabrication procedure of classic 45S5 Bioglass® generates spinodal (A(a)) and droplet (A(b)) varieties and has a significant impact on protein adsorption (B) and cell adhesion (C).


Subject(s)
Ceramics/chemistry , Glass/chemistry , Phase Transition , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Ceramics/pharmacology , Culture Media/pharmacology , Durapatite/chemistry , Materials Testing , Mice , Organic Chemicals/pharmacology , Osteoblasts/cytology , Osteoblasts/drug effects , Surface Properties
15.
Cell Biol Int ; 39(11): 1341-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26074404

ABSTRACT

For many years now, researchers have known of a sensory appendage on the surface of most differentiated cell types called primary cilium. Primary cilia are both chemo- and mechano-sensory in function and have an obvious role in cell cycle control. Because of this, it has been thought that primary cilia are not found on rapidly proliferating cells, for example, cancer cells. Here we report using immunofluorescent staining for the ciliary protein Arl13b that primary cilia are frequently found on HeLa (human epithelial adenocarcinoma) and other cancer cell lines such as MG63 (human osteosarcoma) commonly used for cell culture studies and that the ciliated population is significantly higher (ave. 28.6% and 46.5%, respectively in starved and 15.7-18.6% in un-starved cells) than previously anticipated. Our finding impacts the current perception of primary cilia formed in highly proliferative cells.


Subject(s)
Cilia/physiology , Neoplasms/physiopathology , ADP-Ribosylation Factors/metabolism , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Cell Proliferation/physiology , Cilia/metabolism , Fluorescent Antibody Technique/methods , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction
16.
Physiology (Bethesda) ; 28(2): 93-116, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23455769

ABSTRACT

Gap junctions (GJs) are the only known cellular structures that allow a direct cell-to-cell transfer of signaling molecules by forming densely packed arrays or "plaques" of hydrophilic channels that bridge the apposing membranes of neighboring cells. The crucial role of GJ-mediated intercellular communication (GJIC) for all aspects of multicellular life, including coordination of development, tissue function, and cell homeostasis, has been well documented. Assembly and degradation of these membrane channels is a complex process that includes biosynthesis of the connexin (Cx) subunit proteins (innexins in invertebrates) on endoplasmic reticulum (ER) membranes, oligomerization of compatible subunits into hexameric hemichannels (connexons), delivery of the connexons to the plasma membrane (PM), head-on docking of compatible connexons in the extracellular space at distinct locations, arrangement of channels into dynamic spatially and temporally organized GJ channel plaques, as well as internalization of GJs into the cytoplasm followed by their degradation. Clearly, precise modulation of GJIC, biosynthesis, and degradation are crucial for accurate function, and much research currently addresses how these fundamental processes are regulated. Here, we review posttranslational protein modifications (e.g., phosphorylation and ubiquitination) and the binding of protein partners (e.g., the scaffolding protein ZO-1) known to regulate GJ biosynthesis, internalization, and degradation. We also look closely at the atomic resolution structure of a GJ channel, since the structure harbors vital cues relevant to GJ biosynthesis and turnover.


Subject(s)
Gap Junctions/metabolism , Proteins/metabolism , Animals , Humans , Ion Channels/metabolism , Protein Transport , Proteolysis
17.
Tissue Eng Part A ; 19(13-14): 1632-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23427819

ABSTRACT

Nanoporosity is known to impact the performance of implants and scaffolds such as bioactive glass (BG) scaffolds, either by providing a higher concentration of bioactive chemical species from enhanced surface area, or due to inherent nanoscale topology, or both. To delineate the role of these two characteristics, BG scaffolds have been fabricated with nearly identical surface area (81 and 83±2 m(2)/g) but significantly different pore size (av. 3.7 and 17.7 nm) by varying both the sintering temperature and the ammonia concentration during the solvent exchange phase of the sol-gel fabrication process. In vitro tests performed with MC3T3-E1 preosteoblast cells on such scaffolds show that initial cell attachment is increased on samples with the smaller nanopore size, providing the first direct evidence of the influence of nanopore topography on cell response to a bioactive structure. Furthermore, in vivo animal tests in New Zealand rabbits (subcutaneous implantation) indicate that nanopores promote colonization and cell penetration into these scaffolds, further demonstrating the favorable effects of nanopores in tissue-engineering-relevant BG scaffolds.


Subject(s)
Glass/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Line , Male , Mice , Porosity , Rabbits
18.
J Membr Biol ; 245(8): 465-76, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22825714

ABSTRACT

Gap junctions (GJs) are composed of tens to many thousands of double-membrane spanning GJ channels that cluster together to form densely packed channel arrays (termed GJ plaques) in apposing plasma membranes of neighboring cells. In addition to providing direct intercellular communication (GJIC, their hallmark function), GJs, based on their characteristic double-membrane-spanning configuration, likely also significantly contribute to physical cell-to-cell adhesion. Clearly, modulation (up-/down-regulation) of GJIC and of physical cell-to-cell adhesion is as vitally important as the basic ability of GJ formation itself. Others and we have previously described that GJs can be removed from the plasma membrane via the internalization of entire GJ plaques (or portions thereof) in a cellular process that resembles clathrin-mediated endocytosis. GJ endocytosis results in the formation of double-membrane vesicles [termed annular gap junctions (AGJs) or connexosomes] in the cytoplasm of one of the coupled cells. Four recent independent studies, consistent with earlier ultrastructural analyses, demonstrate the degradation of endocytosed AGJ vesicles via autophagy. However, in TPA-treated cells others report degradation of AGJs via the endo-/lysosomal degradation pathway. Here we summarize evidence that supports the concept that autophagy serves as the cellular default pathway for the degradation of internalized GJs. Furthermore, we highlight and discuss structural criteria that seem required for an alternate degradation via the endo-/lysosomal pathway.


Subject(s)
Autophagy/physiology , Connexins/metabolism , Endocytosis/physiology , Gap Junctions/physiology , Ion Channel Gating/physiology , Lysosomes/metabolism , Signal Transduction/physiology , Animals , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...