Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nanosci Au ; 2(6): 450-485, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573124

ABSTRACT

Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.

2.
ACS Appl Mater Interfaces ; 14(39): 44506-44515, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35976059

ABSTRACT

We propose that the crystallinity of two-dimensional (2D) materials is a crucial factor for achieving highly effective work function (WF) modification. A crystalline 2D MoO3 monolayer enhances substrate WF up to 6.4 eV for thicknesses as low as 0.7 nm. Such a high WF makes 2D MoO3 a great candidate for tuning properties of anode materials and for the future design of organic electronic devices, where accurate evaluation of the WF is crucial. We provide a detailed investigation of WF of 2D α-MoO3 directly grown on highly ordered pyrolytic graphite, by means of Kelvin probe force microscopy (KPFM) and ultraviolet photoemission spectroscopy (UPS). This study underlines the importance of a controlled environment and the resulting crystallinity to achieve high WF in MoO3. UPS is proved to be suitable for determining higher WF attributed to 2D islands on a substrate with lower WF, yet only in particular cases of sufficient coverage. KPFM remains a method of choice for nanoscale investigations, especially when conducted under ultrahigh vacuum conditions. Our experimental results are supported by density functional theory calculations of electrostatic potential, which indicate that oxygen vacancies result in anisotropy of WF at the sides of the MoO3 monolayer. These novel insights into the electronic properties of 2D-MoO3 are promising for the design of electronic devices with high WF monolayer films, preserving the transparency and flexibility of the systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...