Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 20(24): 5117-26, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19846660

ABSTRACT

Activation of the high-osmolarity glycerol (HOG) pathway for osmoregulation in the yeast Saccharomyces cerevisiae involves interaction of the adaptor Ste50p with the cytoplasmic tail of single-transmembrane protein Opy2p. We have determined the solution structure of the Ste50p-RA (Ras association) domain, and it shows an atypical RA fold lacking the beta1 and beta2 strands of the canonical motif. Although the core of the RA domain is fully functional in the pheromone response, an additional region is required for the HOG pathway activation. Two peptide motifs within the intrinsically disordered cytoplasmic tail of Opy2p defined by NMR spectroscopy physically interact with the Step50p-RA domain. These Opy2p-derived peptides bind overlapping regions of the Step50p-RA domain with similarly weak affinities, suggesting a multivalent interaction of these proteins as a crucial point of control of the HOG pathway. As well, overall selection of signaling pathways depends on functionally distinct regions of the Ste50p-RA domain, implicating this element in the control of global regulatory decisions.


Subject(s)
Glycerol/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Folding , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Cytoplasm/chemistry , Molecular Sequence Data , Osmolar Concentration , Osmosis , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Deletion , Signal Transduction , Stress, Physiological , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...