Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Public Health ; 11: 1190308, 2023.
Article in English | MEDLINE | ID: mdl-37637813

ABSTRACT

At the peak of the COVID-19 pandemic, pooled surveillance strategies were employed to alleviate the overwhelming demand for clinical testing facilities. A major drawback of most pooled-testing methods is the dilution of positive samples, which leads to a loss of detection sensitivity and the potential for false negatives. We developed a novel pooling strategy that compensates for the initial dilution with an appropriate concentration during nucleic acid extraction and real-time PCR. We demonstrated the proof of principle using laboratory-created 10-sample pools with one positive and corresponding individual positive samples by spiking a known amount of heat-inactivated SARS-CoV-2 into viral transport medium (VTM) or pooled negative saliva. No Ct difference was observed between a 10-sample pool with one positive vs. the corresponding individually analyzed positive sample by this method, suggesting that there is no detectable loss of sensitivity. We further validated this approach by using nasopharyngeal swab (NPS) specimens and showed that there is no loss of sensitivity. Serial dilutions of the virus were spiked into VTM and pooled with negative saliva in simulated 10-sample pools containing one positive to determine the LOD and process efficiency of this pooling methodology. The LOD of this approach was 10 copies/PCR, and the process efficiencies are ~95%-103% for N1 and ~87%-98% for N2 with samples in different matrices and with two different master mixes tested. Relative to TaqPath 1-step master mix, the TaqMan Fast Virus 1-Step master mix showed better sensitivity for the N2 assay, while the N1 assay showed no Ct difference. Our pooled testing strategy can facilitate large-scale, cost-effective SARS-CoV-2 surveillance screening and maintain the same level of sensitivity when analyzed individually or in a pool. This approach is highly relevant for public health surveillance efforts aimed at mitigating SARS-CoV-2 spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Pandemics , Saliva , Nasopharynx
2.
J Phys Chem A ; 118(35): 7442-53, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-24527783

ABSTRACT

Influx of ferrous ions from the cytoplasm through 3-fold pores in the shell of ferritin protein is computed using a 3-dimensional Poisson-Nernst-Planck electrodiffusion model, with inputs such as the pore structure and the diffusivity profile of permeant Fe(2+) ions extracted from all-atom molecular dynamics (MD) simulations. These calculations successfully reproduce experimental estimates of the transit time of Fe(2+) through the ferritin coat, which is on the millisecond time scale and hence much too long to be directly simulated via all-atom MD. This is also much longer than the typical time scale for ion transit in standard membrane spanning ion channels whose pores bear structural similarity to that of the 3-fold ferritin pore. The slow time scale for Fe(2+) transport through ferritin pores is traced to two features that distinguish the ferritin pore system from standard ion channels, namely, (i) very low concentration of cytoplasmic Fe(2+) under physiological conditions and (ii) very small internal diffusion coefficients for ions inside the ferritin pore resulting from factors that include the divalent nature of Fe(2+) and two rings of negatively charged amino acids surrounding a narrow geometric obstruction within the ferritin pore interior.


Subject(s)
Apoferritins/metabolism , Cytoplasm/metabolism , Diffusion , Humans , Ion Transport , Ions/metabolism , Iron/metabolism , Molecular Dynamics Simulation , Static Electricity , Water/chemistry
3.
J Mol Biol ; 396(3): 580-92, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20005234

ABSTRACT

The voltage-dependent anion channel (VDAC) is the major pathway mediating the transfer of metabolites and ions across the mitochondrial outer membrane. Two hallmarks of the channel in the open state are high metabolite flux and anion selectivity, while the partially closed state blocks metabolites and is cation selective. Here we report the results from electrostatics calculations carried out on the recently determined high-resolution structure of murine VDAC1 (mVDAC1). Poisson-Boltzmann calculations show that the ion transfer free energy through the channel is favorable for anions, suggesting that mVDAC1 represents the open state. This claim is buttressed by Poisson-Nernst-Planck calculations that predict a high single-channel conductance indicative of the open state and an anion selectivity of 1.75--nearly a twofold selectivity for anions over cations. These calculations were repeated on mutant channels and gave selectivity changes in accord with experimental observations. We were then able to engineer an in silico mutant channel with three point mutations that converted mVDAC1 into a channel with a preference for cations. Finally, we investigated two proposals for how the channel gates between the open and the closed state. Both models involve the movement of the N-terminal helix, but neither motion produced the observed voltage sensitivity, nor did either model result in a cation-selective channel, which is observed experimentally. Thus, we were able to rule out certain models for channel gating, but the true motion has yet to be determined.


Subject(s)
Static Electricity , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Animals , Anions/metabolism , Cations/metabolism , Mice , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL