Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(22): e2300301, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36892954

ABSTRACT

Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low-loss, highly confined light propagation at subwavelength scales with out-of-plane or in-plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher-order modes that offer stronger wavelength compression, especially for in-plane HPhPs. In this work, the experimental observation of higher-order in-plane HPhP modes stimulated on a 3C-SiC nanowire (NW)/α-MoO3 heterostructure is reported where leveraging both the low-dimensionality and low-loss nature of the polar NWs, higher-order HPhPs modes within 2D α-MoO3 crystal are launched by the 1D 3C-SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher-order modes are determined. In addition, by altering the geometric orientation between the 3C-SiC NW and α-MoO3 crystal, the manipulation of higher-order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep-subwavelength scales for a range of IR applications including sensing, nano-imaging, and on-chip photonics.

2.
J Food Sci ; 87(8): 3496-3512, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35781707

ABSTRACT

In this study, the effects of extrusion conditions such as feed moisture content (20%, 24%, and 28%), screw speed (200, 300, and 400 rpm), and extrusion temperature (130, 150, and 170°C) on the physical and functional properties (moisture content, expansion ratio, bulk density, hardness, water absorption index [WAI], water solubility index [WSI]) of intermediate wheatgrass (IWG) were investigated for the first time. Response surface methodology was used to model and optimize the extrusion conditions to produce expanded IWG. The model coefficient of determination (R2 ) was high for all the responses (0.87-0.98). All the models were found to be significant (p < 0.05) and were validated with independent experiments. Generally, all the extrusion conditions were found to have significant effects on the IWG properties measured. Increasing the screw speed and decreasing the extrusion temperature resulted in IWG extrudates with a high expansion ratio. This also resulted in IWG extrudates with generally low hardness and bulk density. Screw speed was found to have the most significant effect on the WAI and WSI, with increasing screw speed resulting in a significant (p < 0.05) decrease in WAI and a significant (p < 0.05) increase in WSI. The optimum conditions for obtaining an IWG extrudate with a high expansion ratio and WAI were found to be 20% feed moisture, 200 -356 rpm screw speed, and 130-154°C extrusion temperature. PRACTICAL APPLICATION: Extrusion cooking was employed in the production of expanded IWG. This research could provide a foundation to produce expanded IWG, which can potentially be used as breakfast cereals and snacks. This is critical in the efforts to commercialize IWG for mainstream food applications.


Subject(s)
Cooking , Food Handling , Chemical Phenomena , Cooking/methods , Food Handling/methods , Poaceae , Solubility , Water
3.
Food Chem ; 239: 688-696, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28873623

ABSTRACT

Dextrinization of starch using extrusion processing is crucial to the quality of direct expanded products. To determine the extent of dextrinization, flour samples were extracted from a twin-screw extruder that had been brought to a sudden stop and molecular weights were determined by intrinsic viscosity. The screw profile and moisture feed content had the most significant impact on molecular weight reduction, reducing intrinsic viscosity from 1.75 to 0.70dL/g at the most. The breakdown, as shown by a reduction in intrinsic viscosity, had a strong negative correlation (r=-0.96) with specific mechanical energy. However, the extruder die did not have a measurable impact on the molecular weight reduction of waxy flour. Size exclusion chromatography confirmed intrinsic viscosity measurements were associated with reduction of the size of amylopectin molecules to approximately 1/10 the original molecular weight while native gliadin was nearly eliminated from the waxy flour following the extrusion treatments.


Subject(s)
Flour , Bone Screws , Starch , Viscosity , Waxes
4.
J Food Prot ; 80(10): 1628-1634, 2017 10.
Article in English | MEDLINE | ID: mdl-28853627

ABSTRACT

Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 µg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.


Subject(s)
Avena/chemistry , Food Contamination/analysis , Food Handling/methods , Ochratoxins/analysis , Humans
5.
J Food Sci ; 82(7): 1647-1656, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28613441

ABSTRACT

Objective of this study was to understand the impacts of cellulose fiber with different particle size distributions, and starches with different molecular weights, on the expansion of direct expanded products. Fiber with 3 different particle size distributions (<125, 150 to 250, 300 to 425 µm) and 4 types of starches representing different amylose contents (0%, 23%, 50%, and 70%) were investigated. Feed moisture content (18 ± 0.5 % w.b) and extruder temperature (140 °C) were kept constant and only the extruder screw speed was varied (100, 175, and 250 rpm) to achieve different specific mechanical energy inputs. Fiber particle size and starch type significantly influenced the various product parameters. In general, the smaller fiber particle size resulted in extrudate with higher expansion ratio. Starch with an amylose: amylopectin ratio of 23:77 resulted in highest expansion compared to the other starches, when no fiber was added. Interestingly, starch with 50:50, amylose: amylopectin ratio in combination with smaller fiber particles resulted in product with significantly greater expansion than the control starch extrudates. Aggregation of fiber and shrinkage of surface was observed in the Scanning Electron Microscope images at 10% fiber level. The results suggest the presence of active interactions between the cellulose fiber particles and corn starch molecules during the expansion process. A better understanding of these interactions can help in the development of high fiber extruded products with better expansion.


Subject(s)
Cellulose/chemistry , Dietary Fiber/analysis , Particle Size , Starch/chemistry , Amylopectin/analysis , Amylose/analysis , Food Handling , Hot Temperature , Microscopy, Electron, Scanning , Molecular Weight
6.
J Food Sci ; 81(11): E2726-E2733, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27681599

ABSTRACT

Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P < 0.0001), and created denser products (P < 0.0001), especially for white bran supplemented extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P < 0.0001). Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P < 0.0001) compared to purple bran supplemented extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance.

SELECTION OF CITATIONS
SEARCH DETAIL
...