Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810454

ABSTRACT

There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.

2.
Materials (Basel) ; 14(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918460

ABSTRACT

Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.

3.
Rep Pract Oncol Radiother ; 26(6): 899-905, 2021.
Article in English | MEDLINE | ID: mdl-34992861

ABSTRACT

BACKGROUND: The present paper reports on analysis of 184 patients who were diagnosed with endometrial cancer. The main objective of this study was to address parameter Vrec(30Gy) which determines a volume of the rectum irradiated with a dose of 30 Gy during radiotherapy. MATERIALS AND METHODS: All patients were irradiated with an IMRT technique on linear accelerators. The planning target volume (PTV) contour was determined by a radiation oncologist. The clinical target volume (CTV) was drawn on CT images obtained in a prone position. For statistical analysis, appropriate tests (e.g. the Shapiro-Wilk, Wilcoxon) were used. RESULTS AND DISCUSSION: The performed analysis showed that the recommended condition for Vrec(30Gy) is met only in 3% of patients and the observed median value exceeds 90%. The obtained results were compared with the studies in which the Vrec(30Gy) values were related to various radiotherapy techniques. CONCLUSIONS: The analysis showed that the condition for Vrec(30Gy) is satisfied in the case of only 3% of patients. Due to the difficulty with meeting the condition, it should be reconsidered based on real results.

SELECTION OF CITATIONS
SEARCH DETAIL
...