Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Microgravity ; 10(1): 26, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448495

ABSTRACT

The relationships between materials processing and structure can vary between terrestrial and reduced gravity environments. As one case study, we compare the nonequilibrium melt processing of a rare-earth titanate, nominally 83TiO2-17Nd2O3, and the structure of its glassy and crystalline products. Density and thermal expansion for the liquid, supercooled liquid, and glass are measured over 300-1850 °C using the Electrostatic Levitation Furnace (ELF) in microgravity, and two replicate density measurements were reproducible to within 0.4%. Cooling rates in ELF are 40-110 °C s-1 lower than those in a terrestrial aerodynamic levitator due to the absence of forced convection. X-ray/neutron total scattering and Raman spectroscopy indicate that glasses processed on Earth and in microgravity exhibit similar atomic structures, with only subtle differences that are consistent with compositional variations of ~2 mol. % Nd2O3. The glass atomic network contains a mixture of corner- and edge-sharing Ti-O polyhedra, and the fraction of edge-sharing arrangements decreases with increasing Nd2O3 content. X-ray tomography and electron microscopy of crystalline products reveal substantial differences in microstructure, grain size, and crystalline phases, which arise from differences in the melt processes.

2.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38236195

ABSTRACT

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

3.
NPJ Microgravity ; 9(1): 38, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225716

ABSTRACT

A new method for quantifying facility performance has been discussed in this study that encompasses uncertainties associated with thermophysical property measurement. Four key thermophysical properties: density, volumetric thermal expansion coefficient, surface tension, and viscosity of liquid Au have been measured in microgravity environment using two different levitation facilities. Levitation experiments were conducted using the Electrostatic Levitation Furnace (ELF) onboard the ISS in Argon and air, and the TEMPUS Electromagnetic Levitation (EML) facility on a Novespace Zero-G aircraft parabolic flight in Argon. The traditional Maximum Amplitude method was augmented through the use of Frequency Crossover method to identify the natural frequency for oscillations induced on a molten sample during Faraday forcing in ESL. The EML tests were conducted using a pulse excitation method where two techniques, one imaging and one non-imaging, were used to study surface oscillations. The results from both facilities are in excellent agreement with the published literature values. A detailed study of the accuracy and precision of the measured values has also been presented in this work to evaluate facility performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...