Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 125(1): 406-22, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11154348

ABSTRACT

Rice (Oryza sativa) is sensitive to salinity, which affects one-fifth of irrigated land worldwide. Reducing sodium and chloride uptake into rice while maintaining potassium uptake are characteristics that would aid growth under saline conditions. We describe genetic determinants of the net quantity of ions transported to the shoot, clearly distinguishing between quantitative trait loci (QTL) for the quantity of ions in a shoot and for those that affect the concentration of an ion in the shoot. The latter coincide with QTL for vegetative growth (vigor) and their interpretation is therefore ambiguous. We distinguished those QTL that are independent of vigor and thus directly indicate quantitative variation in the underlying mechanisms of ion uptake. These QTL independently govern sodium uptake, potassium uptake, and sodium:potassium selectivity. The QTL for sodium and potassium uptake are on different linkage groups (chromosomes). This is consistent with the independent inheritance of sodium and potassium uptake in the mapping population and with the mechanistically different uptake pathways for sodium and potassium in rice under saline conditions (apoplastic leakage and membrane transport, respectively). We report the chromosomal location of ion transport and selectivity traits that are compatible with agronomic needs and we indicate markers to assist selection in a breeding program. Based upon knowledge of the underlying mechanisms of ion uptake in rice, we argue that QTL for sodium transport are likely to act through the control of root development, whereas QTL for potassium uptake are likely to act through the structure or regulation of membrane-sited transport components.


Subject(s)
Chromosomes, Plant/genetics , Oryza/physiology , Quantitative Trait Loci , Sodium Chloride/pharmacology , Analysis of Variance , Chromosome Mapping , Genetic Markers , Oryza/drug effects , Oryza/genetics , Plant Shoots/drug effects , Plant Shoots/physiology
2.
J Exp Bot ; 51(342): 99-106, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10938800

ABSTRACT

Secondary salinization and its relationship to irrigation are strong incentives to improve the tolerance of crops to salinity and to drought. Achieving this through the pyramiding of physiological traits (phenotypic selection without knowledge of genotype) is feasible. However, wide application of this approach is limited by the practicalities of assessing not only the parents, but also large numbers of individuals and families in segregating generations. Genotypic information is required in the form of markers for any quantitative trait loci involved (marker-assisted selection) or of direct knowledge of the genes. In the absence of adequate candidate genes for salt tolerance, a quantitative trait locus/marker-assisted selection approach has been used here. Putative markers for ion transport and selectivity, identified from analysis of amplified fragment length polymorphism, had been discovered within a custom-made mapping population of rice. Here it is reported that none of these markers showed any association with similar traits in a closely related population of recombinant inbred lines or in selections of a cultivar. Whilst markers will be of value in using élite lines from the mapping population in backcrossing, this has to be considered alongside the effort required to develop and map any given population. This result cautions against any expectation of a general applicability of markers for physiological traits. It is concluded that direct knowledge of the genes involved is needed. This cannot be achieved at present by positional cloning. The elucidation of candidate genes is required. Here the problem lies not in the analysis of gene expression but in devising protocols in which only those genes of interest are differentially affected by the experimental treatments.


Subject(s)
Adaptation, Physiological/genetics , Oryza/physiology , Quantitative Trait, Heritable , Sodium Chloride , Genetic Markers , Oryza/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...