Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 106(5): 1266-1274, 2017 05.
Article in English | MEDLINE | ID: mdl-28089687

ABSTRACT

Antibodies often have poor physicochemical stability during storage and transport, which is a serious drawback for the development of antibody-based drugs. In this study, we prepared polypseudorotaxane (PPRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol, and evaluated them as stabilizers for commercially available antibody-based drugs. α-CyD and γ-CyD formed PPRX hydrogels with polyethylene glycol (molecular weight 20,000 Da) in the presence of antibody-based drugs such as omalizumab, palivizumab, panitumumab, and ranibizumab. Importantly, both α- and γ-CyD PPRX hydrogel formulations provided high stabilizing effects (ca. 100%) to the all antibody-based drugs used in this study. Furthermore, approximately 100% of the binding activity of omalizumab to the immunoglobulin E receptor was retained after the release from the hydrogels. Plasma levels of omalizumab after subcutaneous injection of the γ-CyD PPRX hydrogel to rats were equivalent to those of omalizumab alone. According to the results of blood chemistry tests, the weights of organs and histological observations α- and γ-CyD PPRX hydrogels induced no serious adverse effects. These results suggest that CyD PPRX hydrogels are useful as safe and promising stabilizing formulations for antibody-based drugs.


Subject(s)
Antibodies, Monoclonal/chemistry , Cyclodextrins/chemistry , Hydrogels/chemistry , Rotaxanes/chemistry , Animals , Antibodies, Monoclonal/metabolism , Cyclodextrins/metabolism , Dose-Response Relationship, Drug , Drug Compounding , Drug Stability , Humans , Hydrogels/metabolism , Male , Protein Binding/physiology , Rats , Rotaxanes/metabolism
2.
AAPS PharmSciTech ; 16(6): 1290-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25776984

ABSTRACT

To achieve the potent therapeutic effects of human immunoglobulin G (IgG), highly concentrated formulations are required. However, the stabilization for highly concentrated human IgG is laborious work. In the present study, to investigate the potentials of polypseudorotaxane (PPRX) hydrogels consisting of polyethylene glycol (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as pharmaceutical materials for highly concentrated human IgG, we designed the PPRX hydrogels including human IgG and evaluated their pharmaceutical properties. The α- and γ-CyDs formed PPRX hydrogels with PEG (M.W. 20,000) even in the presence of highly concentrated human IgG (>100 mg/mL). According to the results of (1)H-NMR, powder X-ray diffraction, and Raman microscopy, the formation of human IgG/CyD PPRX hydrogels was based on physical cross-linking arising from their columnar structures. The release profiles of human IgG from the hydrogels were in accordance with the non-Fickian diffusion model. Importantly, the stabilities of human IgG included into the hydrogels against thermal and shaking stresses were markedly improved. These findings suggest that PEG/CyD PPRX hydrogels are useful to prepare the formulation for highly concentrated human IgG.


Subject(s)
Cyclodextrins/chemistry , Hydrogels/chemistry , Immunoglobulin G/chemistry , Rotaxanes/chemistry , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Polyethylene Glycols/chemistry , X-Ray Diffraction/methods , gamma-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...