Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(36): 25191-25209, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711446

ABSTRACT

The one-step conversion of ethanol to 1,3-butadiene was performed using talc containing Zn (talc/Zn) as a catalyst. The influence of the MgO and Zn in the talc on the formation rate and selectivity for 1,3-butadiene were investigated. MgO as a catalyst afforded 1,3-butadiene with a selectivity that was nearly the same as talc/Zn at ∼40% ethanol conversion at 673 K, although the rate of 1,3-butadiene formation over MgO was about 40 times lower than that over the talc/Zn. The introduced Zn cations were located in octahedral sites in place of Mg cations in the talc lattice. The Zn cations accelerated the rate of CH3CHO formation from ethanol, resulting in an increase in the rate of 1,3-butadiene formation. However, the rate of CH3CHO consumption to form crotonaldehyde was not influenced by Zn, although the distribution of crotonaldehyde was decreased with increasing Zn concentrations. X-ray photoelectron spectra of talc/Zn showed that the O1s binding energy was increased by increasing the concentration of Zn, while those of both Mg2p and Si2p were hardly influenced. DFT calculations were used to estimate the atomic charges on the O, Mg, Si, and Zn atoms when an atom of Zn per unit cell of talc was introduced into an octahedral site. On the basis of the results for the conversion of ethanol into 1,3-butadiene and the corresponding DFT calculations, the roles of the O, Zn, Mg, and Si atoms in the talc catalyst for the formation of 1,3-butadiene from ethanol were discussed.

2.
Phys Chem Chem Phys ; 12(11): 2541-54, 2010 Mar 20.
Article in English | MEDLINE | ID: mdl-20200730

ABSTRACT

A plausible reaction mechanism for propylene (C(3)H(6)) production from ethylene (C(2)H(4)) was investigated, based on the amounts of effluent hydrocarbons and hydrocarbons produced in the pores of SAPO-34. Propylene was produced via an oligomerization-cracking mechanism. On the basis of this mechanism, the conversions of C(2)H(4), pentenes, and hexenes were examined. The catalytic performance was compared, in order to investigate the role of the pore volume of zeolites with 8-, 10-, and 12-membered rings in the selective production of C(3)H(6). The selectivity for C(3)H(6) was crucially dependent upon the pore volume of the zeolite. Highly selective production of C(3)H(6) from olefins (C(2)H(4), pentenes, and hexenes) can be accomplished by employing a new concept: adjusting the pore volume of a zeolite to accommodate the volume of an olefin and/or its carbenium cations, as opposed to a conventional molecular sieve approach. For example, an unimolecular cracking of pentenes into C(3)H(6) and C(2)H(4) involving primary cations can be controlled by the pore volume of a zeolite.

3.
Phys Chem Chem Phys ; 11(40): 9268-77, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19812848

ABSTRACT

To investigate the effect of SAPO-34 particle size (with a fixed Si mole fraction in its framework) and that of the Si mole fraction (in a SAPO-34 framework with fixed particle size) on propylene selectivity and production rate for the conversion of ethylene to propylene, SAPO-34 was prepared by hydrothermal synthesis using tetraethyl ammonium hydroxide or morpholine as a structural agent. The conversion of ethylene was carried out at 473 K using SAPO-34. The selectivity for propylene, the rate of propylene production, and the lifetime of the catalyst were strongly influenced by the catalyst crystal size. The SAPO-34 with a approximately 2.5 microm particle size had the highest selectivity for propylene (approximately 80%) up to a high conversion of ethylene (approximately 70%), while SAPO-34 with smaller particles had a longer catalyst lifetime, implying that catalyst deactivation was suppressed. The mole fraction of Si in the SAPO-34 framework with fixed particle size had little influence on the selectivity for propylene, indicating that the acid strength of SAPO-34 is independent of the Si mole fraction and all protons in SAPO-34 behave equivalently. Furthermore, the acid strength of protons determined by the measurements of NH(3)-TPD (temperature-programmed desorption) spectra did not depend on either the Si mole fraction or the SAPO-34 particle size. This result was also evident in the cracking rate of n-butane, which increased proportionally with increasing number of protons in SAPO-34.The number of protons generated by the incorporation of Si4+ into the SAPO-34 lattice increased proportionally, up to one Si atom introduced into every cage of SAPO-34, but did not continue to increase with further introduction of Si4+ into the lattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...