Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Urol Nephrol ; 56(3): 999-1006, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37821762

ABSTRACT

PURPOSE: Our aim is to develop a patient-specific bladder-filling protocol (PSP) using an ultrasound-based bladder scanner (BS) and compare the volumetric and dosimetric parameters with those of the standard filling protocol (SP) in postprostatectomy patients. METHODS: Twenty postprostatectomy patients who received salvage radiotherapy (72 Gy/36 fx) were included. For PSP, the patient was asked to drink 500 mL of water after emptying his bladder. Bladder volume was measured using BS every 10 min. Each patient's unique time to reach a 150-200 cc volume was used for simulation and treatment. For the SP, the patient was asked about the feeling of having a full bladder. Organs at risk (OAR) were contoured on cone-beam computed tomography (CBCT) scans that were transferred to the treatment planning system (TPS). Treatment plans were applied to CBCTs. Changes in bladder volume and doses for planning computed tomography (PCT) and CBCT were determined. RESULTS: In the SP, there was no significant difference in mean bladder volume for PCT and CBCT (p = 0.139); however, there was a trend for significance in the mean bladder dose (p = 0.074). In PSP, there was no significant difference in the mean bladder volume or dose for PCT and CBCT (p = 0.139 and p = 0.799, respectively). There was a significant difference in terms of mean CBCT bladder volume between the two protocols (p = 0.007), whereas no significant difference was detected in terms of bladder dose (p = 0.130). CONCLUSION: With PSP, optimal bladder filling was obtained and maintained throughout the whole treatment course, and it was reproducible in every fraction.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Urinary Bladder , Humans , Male , Urinary Bladder/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed , Prostatectomy , Radiotherapy Dosage
2.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37147965

ABSTRACT

Aim: The aim is to extensively evaluate imaging features of radiation induced lung disease in breast cancer patients and to determine the relationship of imaging alterations with dosimetric parameters and patient related characteristics. Materials and Methods: A total of 76 breast cancer patients undergoing radiotherapy (RT) were studied retrospectively by case notes, treatment plans, dosimetric parameters, and chest computed tomography (CT) scans. Time intervals, that chest CT scans were acquired, were grouped as 1-6 months, 7-12 months, 13-18 months and more than 18 months after RT. Chest CTs (one or more for each patient) were assessed for the presence of ground glass opacity, septal thickening, consolidation/patchy pulmonary opacity/alveolar infiltrates, subpleural air cyst, air bronchogram, parenchymal bands, traction bronchiectasis, pleural/subpleural thickening and pulmonary volume loss. These alterations were scored by applying a system devised by Nishioka et al. Nishioka scores were analyzed for the relationship with clinical and dosimetric factors. Statistical Analysis Used: IBM SPSS Statistics for Windows, version 22.0 (IBM Corp., Armonk, N.Y., USA) was used to analyze data. Results: Median follow-up time was 49 months. Advanced age and aromatase inhibitor intake were correlated with higher Nishioka scores for 1-6 months' period. However, both were found nonsignificant in multivariate analysis. Nishioka scores of CT scans acquired more than 12 months after RT were positively correlated with mean lung dose, V5, V20, V30, and V40. Receiver operating characteristic analysis revealed that V5 for ipsilateral lung was the most robust dosimetric parameter predicting chronic lung injury. V5 >41% indicates the development of radiological lung changes. Conclusions: Keeping V5 ≤41% for ipsilateral lung could provide avoiding chronic lung sequelae.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Radiation Injuries , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Retrospective Studies , Radiotherapy Dosage , Lung/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiation Injuries/diagnostic imaging , Radiation Injuries/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...