Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(43): 18010-18019, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34689551

ABSTRACT

Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.

2.
Nanoscale ; 11(27): 13154-13160, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31267117

ABSTRACT

"Chemical activation" using Brønsted acids as chemical agents is widely used to generate activated carbons for various sorption applications. Commercially relevant is especially a process using phosphoric acid as activating agent applied to abundant and inexpensive biomass such as wood or coconut shells. In this manuscript, we revisit the porogenesis mechanism based on experiments involving molecular model compounds and oxygen-free polymer precursors, as well as different molten acids as activating agents. Describing acid activation with principles of sol-gel chemistry results in a more general understanding and uncovers a versatile synthetic tool for materials nanochemistry.

3.
ACS Appl Mater Interfaces ; 8(45): 30992-31005, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27783899

ABSTRACT

Experiments were combined with atomically detailed simulations and density functional theory (DFT) calculations to understand the effect of incorporation of an ionic liquid (IL), 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), into a metal organic framework (MOF with a zeolitic imidazolate framework), ZIF-8, on the CO2 separation performance. The interactions between [BMIM][PF6] and ZIF-8 were examined in deep detail, and their consequences on CO2/CH4, CO2/N2, and CH4/N2 separation have been elucidated by using experimental measurements complemented by DFT calculations and atomically detailed simulations. Results suggest that IL-MOF interactions strongly affect the gas affinity of materials at low pressure, whereas available pore volume plays a key role for gas adsorption at high pressures. Direct interactions between IL and MOF lead to at least a doubling of CO2/CH4 and CO2/N2 selectivities of ZIF-8. These results provide opportunities for rational design and development of IL-incorporated MOFs with exceptional selectivity for target gas separation applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...