Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 1(3): 181-95, 2000 Oct 02.
Article in English | MEDLINE | ID: mdl-11828411

ABSTRACT

This study documents the feasibility of switching to an aprotic medium in sugar receptor research. The solvent change offers additional insights into mechanistic details of receptor--carbohydrate ligand interactions. If a receptor retained binding capacity in an aprotic medium, solvent-exchangeable protons of the ligand would not undergo transfer and could act as additional sensors, thus improving the level of reliability in conformational analysis. To probe this possibility, we first focused on hevein, the smallest lectin found in nature. The NMR-spectroscopic measurements verified complexation, albeit with progressively reduced affinity by more than 1.5 orders of magnitude, in mixtures of up to 50% dimethyl sulfoxide (DMSO). Since hevein lacks the compact beta-strand arrangement of other sugar receptors, such a structural motif may confer enhanced resistance to solvent exchange. Two settings of solid-phase activity assays proved this assumption for three types of alpha- and/or beta-galactoside-binding proteins, that is, a human immunoglobulin G (IgG) subfraction, the mistletoe lectin, and a member of the galectin family of animal lectins. Computer-assisted calculations and NMR experiments also revealed no conspicuous impact of the solvent on the conformational properties of the tested ligands. To define all possible nuclear Overhauser effect (NOE) contacts in a certain conformation and to predict involvement of exchangeable protons, we established a new screening protocol applicable during a given molecular dynamics (MD) trajectory and calculated population densities of distinct contacts. Experimentally, transferred NOE (tr-NOE) experiments with IgG molecules and the disaccharide Gal'alpha1-3Galbeta1-R in DMSO as solvent disclosed that such an additional crosspeak, that is, Gal'OH2--GalOH4, was even detectable for the bound ligand under conditions in which spin diffusion effects are suppressed. Further measurements with the plant lectin and galectins confirmed line broadening of ligand signals and gave access to characteristic crosspeaks in the aprotic solvent and its mixtures with water. Our combined biochemical, computational, and NMR-spectroscopical strategy is expected to contribute notably to the precise elucidation of the geometry of ligands bound to compactly folded sugar receptors and of the role of water molecules in protein--ligand (carbohydrate) recognition, with relevance to areas beyond the glycosciences.


Subject(s)
Antimicrobial Cationic Peptides , Disaccharides/chemistry , Lectins/chemistry , Lectins/metabolism , Plant Lectins , Plant Proteins/metabolism , Binding Sites , Carbohydrate Conformation , Computer Graphics , Computer Simulation , Disaccharides/metabolism , Ligands , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Plant Proteins/chemistry , Protein Binding , Protein Structure, Tertiary , Solvents
2.
Biopolymers ; 46(6): 417-32, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9798429

ABSTRACT

Conformations of the alpha-L-Rhap(1-2)-beta-D-Glc1-OMe and beta-D-Galp(1-3)-beta-D-Glc1-OMe disaccharides and the branched title trisaccharide were examined in DMSO-d6 solution by 1H-nmr. The distance mapping procedure was based on rotating frame nuclear Overhauser effect (NOE) constraints involving C- and O-linked protons, and hydrogen-bond constraints manifested by the splitting of the OH nmr signals for partially deuteriated samples. An "isotopomer-selected NOE" method for the unequivocal identification of mutually hydrogen-bonded hydroxyl groups was suggested. The length of hydrogen bonds thus detected is considered the only one motionally nonaveraged nmr-derived constraint. Molecular mechanics and molecular dynamics methods were used to model the conformational properties of the studied oligosaccharides. Complex conformational search, relying on a regular phi, psi-grid based scanning of the conformational space of the selected glycosidic linkage, combined with simultaneous modeling of different allowed orientations of the pendant groups and the third, neighboring sugar residue, has been carried out. Energy minimizations were performed for each member of the phi, psi grid generated set of conformations. Conformational clustering has been done to group the minimized conformations into families with similar values of glycosidic torsion angles. Several stable syn and anti conformations were found for the 1-->2 and 1-->3 bonds in the studied disaccharides. Vicinal glycosylation affected strongly the occupancy of conformational states in both branches of the title trisaccharide. The preferred conformational family of the trisaccharide (with average phi, psi values of 38 degrees, 17 degrees for the 1-->2 and 48 degrees, 1 degree for the 1-->3 bond, respectively) was shown by nmr to be stabilized by intramolecular hydrogen bonding between the nonbonded Rha and Gal residues.


Subject(s)
Disaccharides/chemistry , Trisaccharides/chemistry , Carbohydrate Sequence , Glycosylation , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data
3.
Acta Anat (Basel) ; 161(1-4): 91-109, 1998.
Article in English | MEDLINE | ID: mdl-9780353

ABSTRACT

The mysteries of the functions of complex glycoconjugates have enthralled scientists over decades. Theoretical considerations have ascribed an enormous capacity to store information to oligosaccharides. In the interplay with lectins sugar-code words of complex carbohydrate structures can be deciphered. To capitalize on knowledge about this type of molecular recognition for rational marker/drug design, the intimate details of the recognition process must be delineated. To this aim the required approach is garnered from several fields, profiting from advances primarily in X-ray crystallography, nuclear magnetic resonance spectroscopy and computational calculations encompassing molecular mechanics, molecular dynamics and homology modeling. Collectively considered, the results force us to jettison the preconception of a rigid ligand structure. On the contrary, a carbohydrate ligand may move rather freely between two or even more low-energy positions, affording the basis for conformer selection by a lectin. By an exemplary illustration of the interdisciplinary approach including up-to-date refinements in carbohydrate modeling it is underscored why this combination is considered to show promise of fostering innovative strategies in rational marker/drug design.


Subject(s)
Lectins/chemistry , Crystallography , Drug Design , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular
4.
Glycoconj J ; 15(2): 187-91, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9557880

ABSTRACT

Three-dimensional structures of the natural substrate unit for the enzyme N-acetylglucosamine-transferase II, GIcNAc-Man3-GlcNAc2, were investigated by molecular modelling methods. Molecular dynamics (MD) and molecular mechanics calculations on two hexasaccharides, namely GlcNAc-Man3-GlcNAc2-Asn and GlcNAc-Man3-GlcNAc2-OMe were performed by the Biosym/MSI software using the CVFF and CFF95 force fields in vacuum. The MD simulations were calculated for 3 ns at different simulation temperatures and for two values of dielectric constant, epsilon=1 and epsilon=4. From each 3 ns trajectory, 3050 structures have been optimized. The local minima obtained have been clustered into families exhibiting similar values of glycosidic torsional angles phi, psi, and omega. The influence of the simulation conditions and force fields used on the conformational behaviour and structure of the title oligosaccharides is discussed.


Subject(s)
Oligosaccharides/chemistry , Acetylglucosamine , Carbohydrate Conformation , Carbohydrate Sequence , Computer Simulation , Models, Molecular , Molecular Sequence Data , N-Acetylglucosaminyltransferases/metabolism , Oligosaccharides/metabolism
5.
Eur J Biochem ; 252(3): 416-27, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9546657

ABSTRACT

To study conformational parameters of ligands before and after complex formation with the galactoside-binding agglutinin of Viscum album L. (VAA) in solution, combined computer-assisted random walk molecular mechanics (RAMM) calculations extended by conformational clustering analysis (CCA), molecular dynamics (MD) simulations as well as two-dimensional rotating-frame nuclear Overhauser effect (ROE) and two-dimensional nuclear Overhauser effect (NOE) spectroscopy NMR experiments were employed. Derivatives of the naturally occurring disaccharides Galbeta1-3GlcNAcbeta1-R and Galbeta1-3GalNAcbeta1-R as well as of a synthetic high-affinity binding partner, i.e. the disaccharide Galbeta1-2Galbeta1-R', were chosen as ligands in this study. The disaccharides displayed inherent flexibility in the valley of the global minimum between phi/psi combinations of (40 degrees/60 degrees) and (40 degrees/-60 degrees). Calculations of the de-N-acetylated sugars revealed that presence of this group did not markedly influence the distribution of low-energy conformers in the phi, psi, epsilon plot. Occupation of side minima at phi/psi (180 degrees/0 degrees) or (0 degrees/180 degrees) is either unlikely or low according to the results of MD simulations and RAMM calculations extended by CCA. Notably, these side minima define conformations which are not stable during a MD simulation. Transitions to other minima occur already a few picoseconds after the start of the simulation. NMR experiments of the free-state ligand confirmed the validity of the data sets obtained by the calculations. Following the description of the conformational space in the free-state NMR experiments were performed for these disaccharides complexed with VAA. They yielded two interresidual contacts for Galbeta1-3GlcNAcbeta1-R and Galbeta1-2Galbeta1-R'. The ligand conformations in the complex did not deviate markedly from those of a minimum conformation in the free state. One- and two-dimensional transferred nuclear Overhauser enhancement (TRNOE) experiments at different mixing times excluded the influence of spin-diffusion effects. When the NOE build-up curves in the three studied cases were compared, the residual mobility of the penultimate carbohydrate unit of Galbeta1-3GalNAcbeta1-R was observed to be higher than that of the respective hexopyranose unit of the other two bound ligands. Due to the availability of the conformational parameters of Galbeta1-2Galbeta1-R' in association with a galectin, namely the beta-galactoside-binding protein from chicken liver, it is remarkable to note that this ligand displays different conformations in the binding sites of either the plant or the animal lectin. They correspond to local energy-minimum conformations in the phi,psi, epsilon plot and substantiate differential conformer selection by these two lectins with identical nominal monosaccharide specificity.


Subject(s)
Disaccharides/chemistry , Galactosides , Lectins/chemistry , Lectins/metabolism , Plant Preparations , Plant Proteins , Toxins, Biological/chemistry , Toxins, Biological/metabolism , Binding Sites , Carbohydrate Conformation , Carbohydrate Sequence , Computer Simulation , Disaccharides/metabolism , Ligands , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Ribosome Inactivating Proteins, Type 2 , Thermodynamics
6.
Glycoconj J ; 14(8): 925-33, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9486425

ABSTRACT

The determination of conformational preferences of oligosaccharides is best approached by describing their preferred conformations on potential energy surfaces as a function of the glycosidic linkage phi, psi torsional angles. For proper molecular mechanics modelling the flexibility of the rotatable pendant groups must also be considered. The so called adiabatic maps partially mimic the flexibility within the 10 dimensional conformational space of the pendant groups of the given disaccharide. These molecular mechanics maps are considered to be the state-of-the art of the phi, psi potential energy surface of disaccharides recently calculated. The RAMM (RAndom Molecular Mechanics) method was shown to be able to calculate such profiles automatically. Additionally, based on the continuum solvent approach, RAMM allows the calculation of the effects of solvent on conformational energy profiles. Molecular dynamics simulations are also useful tools to study the influence of solvent on conformational behaviour of oligosaccharides. The capability of the RAMM calculational protocol to locate low-energy conformers on the multidimensional potential energy hypersurfaces of disaccharides is illustrated and compared with molecular dynamics simulations with and without inclusion of the solvent.


Subject(s)
Carbohydrate Conformation , Models, Molecular , Oligosaccharides/chemistry , Carbohydrate Sequence , Dimethyl Sulfoxide , Disaccharides/chemistry , Electrochemistry , Maltose/chemistry , Solvents , Thermodynamics , Vacuum
7.
Biochem Biophys Res Commun ; 219(1): 205-12, 1996 Feb 06.
Article in English | MEDLINE | ID: mdl-8619808

ABSTRACT

The binding of a carbohydrate to a lectin may affect the conformation of the ligand. To address this question for the galectin from chicken liver, the conformation of Gal beta 1-2Gal beta 1-R was analyzed in the free and in the galectin-bound state with 2D-ROESY- and 1D- as well as 2D-transferred NOE-experiments. A computer-assisted analysis of spatial parameters of the ligand by molecular dynamics (MD) and random walk molecular mechanics (RAMM) calculations, taking different dielectric constraints from epsilon = 1 to epsilon = 80 and various force fields into account, were instrumental to define the energetic minima of the free state. NMR-derived interresidual distance constraints enabled a conformational mapping. The two overlapping interresidual distance constraints obtained from transferred-NOE experiments of the galectin-ligand complex clearly support the notion that the conformation of the disaccharide in the bound state is at least very close to its global energy minimum state in solution.


Subject(s)
Hemagglutinins/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Animals , Carbohydrate Conformation , Carbohydrate Sequence , Chickens , Computer Graphics , Galectins , Hemagglutinins/isolation & purification , Ligands , Liver/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Sequence Data , Oligosaccharides/chemical synthesis
8.
Biopolymers ; 29(12-13): 1531-9, 1990.
Article in English | MEDLINE | ID: mdl-2386805

ABSTRACT

The 2-methylaminotetrahydropyran was used as a model to study conformational properties of the N-glycosidic linkage in glycosylamines. Relaxed two-dimensional conformational (phi, psi) maps in 20 solvents were calculated by a method in which the total energy is divided into the energy of the isolated molecule and the solvation energy. Molecular geometry optimization has been carried out for each conformer using the quantum chemical method PCILO. The calculated variations of the geometry are consistent with the results obtained by the statistical analysis of available experimental data retrieved from the Cambridge Structural Database. The calculated abundances of conformers show that the polarity of the solvent has little effect on the anomeric ratio, and the form having the methylamino group equatorial is favored in all considered solvents.


Subject(s)
Carbohydrate Conformation , Pyrans , Chemical Phenomena , Chemistry, Physical
SELECTION OF CITATIONS
SEARCH DETAIL
...