Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(2): e8554, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222950

ABSTRACT

Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid-20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011-April 2013, calibrating the loggers' spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71-1105 individuals (95% CI, point estimate 491) during May-October within the population's proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design-based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.

2.
Sci Rep ; 9(1): 13237, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519926

ABSTRACT

During last decades, anthropogenic underwater sound and its chronic impact on marine species have been recognised as an environmental protection challenge. At the same time, studies on the spatial and temporal variability of ambient sound, and how it is affected by biotic, abiotic and anthropogenic factors are lacking. This paper presents analysis of a large-scale and long-term underwater sound monitoring in the Baltic Sea. Throughout the year 2014, sound was monitored in 36 Baltic Sea locations. Selected locations covered different natural conditions and ship traffic intensities. The 63 Hz, 125 Hz and 2 kHz one-third octave band sound pressure levels were calculated and analysed. The levels varied significantly from one monitoring location to another. The annual median sound pressure level of the quietest and the loudest location differed almost 50 dB in the 63 Hz one-third octave band. Largest difference in the monthly medians was 15 dB in 63 Hz one-third octave band. The same monitoring locations annual estimated probability density functions for two yearly periods show strong similarity. The data variability grows as the averaging time period is reduced. Maritime traffic elevates the ambient sound levels in many areas of the Baltic Sea during extensive time periods.

SELECTION OF CITATIONS
SEARCH DETAIL
...