Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(46): 17249-17257, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37966801

ABSTRACT

A diamine-bis(phenolate) chromium(III) complex, CrOH[L] ([L] = dimethylaminoethylamino-N,N-bis(2-methylene-4,6-tert-butylphenolate)), 2, in the presence of tetrabutylammonium hydroxide effectively copolymerizes CO2 and cyclohexene oxide (CHO) into a polycarbonate diol. The resultant low molar mass (6.3 kg mol-1) diol is used to initiate ring-opening polymerization of rac-lactide with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) giving ABA-type block copolymers with good molar mass control through varying rac-LA-to-diol loadings and with narrow dispersities. As the degree of rac-LA incorporation increases, the glass transition temperatures (Tg) are found to decrease, whereas decomposition temperatures (Td) increase. (Diphenylphosphonimido)triphenylphosphorane (Ph2P(O)NPPh3) was used as a neutral nucleophilic cocatalyst with 2, giving phosphorus-containing polycarbonates with an Mn value of 28.5 kg mol-1, a dispersity of 1.13, a Tg value of 110 °C and a Td value of over 300 °C. A related Cr(III) complex (4) having a methoxyethyl pendent group rather than a dimethylaminoethyl group was structurally characterized as a hydroxide-bridged dimer.

2.
Chem Sci ; 14(17): 4549-4563, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37152250

ABSTRACT

Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth(iii) complexes (cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters ε-caprolactone and rac-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.

3.
Macromol Rapid Commun ; 42(3): e2000339, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32776409

ABSTRACT

Waste-derived fish oil (FO) can be epoxidized and reacted with CO2 to produce a cyclic carbonate containing material. Upon reaction with a bioderived amine, this leads to the formation of nonisocyanate polyurethane materials. The FO used is extracted from the by-products produced at fish processing plants, including heads, bones, skin, and viscera. Three different methods are used for the epoxidation of the FO: (i) oxidation by 3-chloroperoxybenzoic acid, (ii) oxidation by hydrogen peroxide and acetic acid, catalyzed by sulfuric acid, and (iii) oxidation by hydrogen peroxide catalyzed by formic acid. Synthesized FO epoxides are reacted with CO2 to yield FO cyclic carbonates with high conversions. The products are characterized by 1 H and 13 C NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, and viscometry. Using a biomass-derived amine, nonisocyanate polyurethane materials are synthesized. This process can lead to new opportunities in waste management, producing valuable materials from a resource that is otherwise underutilized.


Subject(s)
Anacardium , Polyurethanes , Amines , Carbonates , Epoxy Compounds
4.
Inorg Chem ; 59(20): 15375-15383, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33012167

ABSTRACT

Chromium diamino-bis(phenolate) complexes, CrXL [where L = 6,6'-((1,4-diazepane-1,4-diyl)bis(methylene))bis(2,4-dimethylphenolato) and X = Cl- (1), OH- (2), and N3- (3)], were prepared and characterized by MALDI-TOF MS and single-crystal X-ray diffraction. Complex 1 crystallized as two linkage isomers, specifically a green chloride-bridged dimer (1) and a pink asymmetrically bridged isomer exhibiting one chloride bridging atom and one bridging phenolate oxygen (1'). Adventitious moisture during sample handling causes the formation of hydroxide-containing complex 2. The reaction of 1 with PPNN3 (where PPN = bis(triphenylphosphine)iminium) permits the isolation of a crystalline chromium azide complex, 3, which was structurally authenticated. Complex 1 showed good activity toward the ring-opening copolymerization of cyclohexene oxide and carbon dioxide with an added chloride, azide, or 4-(dimethylamino)pyridine (DMAP) cocatalyst to give a completely alternating polycarbonate with a narrow molecular weight dispersity.

5.
Dalton Trans ; 49(5): 1531-1544, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31930245

ABSTRACT

Compounds of Li, Na, K and Ca of a tetradentate amino-bis(phenolato) ligand were prepared. Bimetallic compounds formulated as M2[L](THF)n (where M = Na, n = 1 (1·THF) or Li, n = 1 (2·THF)) were synthesized via the reaction of H2[L] (where [L] = 2-pyridylmethylamino-N,N-bis(2-methylene-4-methoxy-6-tert-butylphenolato) with sodium hydride or n-butyllithium, respectively, in THF. Monometallic complexes MH[L](THF)n (where M = Na, n = 1 (3·THF), Li, n = 0 (4) and K, n = 0 (5)) were obtained by reaction of H2[L] with MN(SiMe3)2 where M = Na, Li, or K. Calcium complex Ca[L](THF) (6·THF) was synthesized in two ways; reaction of Na2[L] with calcium iodide in THF, and reaction of Ca[N(SiMe3)2]2 with H2[L] in toluene. Compounds 1-6 exhibit activity for rac-lactide polymerization under melt and solution conditions. Moderate control of polymer molecular weights was achieved in toluene, whereas polydisperse polymer was obtained under solvent free conditions. MALDI-TOF MS analysis of the polymer end groups revealed a predominantly cyclic nature for the polylactides.

6.
Dalton Trans ; 48(36): 13699-13710, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31469141

ABSTRACT

The synthesis and structural characterization of bimetallic and trimetallic zinc complexes of amino-bis(phenolate) ligands are described. Bimetallic complexes (ZnEt)2[L1] (1a), its THF adduct (ZnEt)2[L1]·THF (1a·THF), and (ZnEt)2[L2] (1b) (where [L1] = n-propylamine-N,N-bis(2-methylene-4,6-di-t-butylphenolate) and [L2] = n-propylamine-N,N-bis(2-methylene-6-t-butyl-4-methylphenolate) were prepared via reaction of the proligands H2[L1] and H2[L2] with ZnEt2. The addition of isopropanol to complex 1a to replace the ethyl groups with more nucleophilic alkoxyl groups afforded trimetallic zinc complex Zn3(i-PrO)2[L1]2 (3). Their structures were confirmed by X-ray crystallography. Their catalytic activity towards ring-opening polymerization (ROP) of rac-lactide with or without exogenous alcohol as a co-initiator was studied. These complexes exhibit moderate to good activity for ROP of rac-lactide both in the melt phase and solution. The influence of catalyst and co-initiator loadings were studied and thermodynamic activation parameters were determined. Characterization of the polymers by Gel Permeation Chromatography (GPC) and Matrix-Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry showed controlled and living polymerizations for rac-lactide in the presence of alcohol.

7.
Inorg Chem ; 58(16): 11231-11240, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31369254

ABSTRACT

A family of 17 iron(III) aminobis(phenolate) complexes possessing different phenolate substituents, coordination geometries, and donor arrangements were used as catalysts for the reaction of carbon dioxide (CO2) with epoxides. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of the iron complexes with a bis(triphenylphosphine)iminium chloride cocatalyst in negative mode revealed the formation of six-coordinate iron "ate" species. Under low catalyst loadings (0.025 mol % Fe and 0.1 mol % chloride cocatalyst), all complexes showed good-to-excellent activity for converting propylene oxide to propylene carbonate under 20 bar of CO2. The most active complex possessed electron-withdrawing dichlorophenolate groups and for a 2 h reaction time gave a turnover frequency of 1240 h-1. Epichlorohydrin, styrene oxide, phenyl glycidyl ether, and allyl glycidyl ether could also be transformed to their respective cyclic carbonates with good-to-excellent conversions. Selectivity for polycarbonate formation was observed using cyclohexene oxide, where the best activity was displayed by trigonal-bipyramidal iron(III) complexes having electron-rich phenolate groups and sterically unencumbering tertiary amino donors. Those containing bulky tertiary amino ligands or those with square-pyramidal geometries around iron showed no activity for polycarbonate formation. While the overall conversions declined with decreasing CO2 pressure, CO2 incorporation remained high, giving a completely alternating copolymer. The difference in the optimum catalyst reactivity for cyclic carbonate versus polycarbonate formation is particularly noteworthy; that is, electron-withdrawing-group-containing phenolates give the most active catalysts for propylene carbonate formation, whereas catalysts with electron-donating-group-containing phenolates are the most active for polycyclohexene carbonate formation. This study demonstrates that the highly modifiable aminophenolate ligands can be tailored to yield iron complexes for both CO2/epoxide coupling and ring-opening copolymerization activity.

8.
Dalton Trans ; 48(18): 6248-6260, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30985844

ABSTRACT

Cobalt(ii) and (iii) complexes bearing tetradentate amino-bis(phenolate) ligands containing either pendent dimethylaminoethylene or pyridyl groups and phenolates bearing electron-donating alkyl or electron-withdrawing chloro substituents were synthesized. The compounds were characterized by mass spectrometry, elemental analysis and NMR for diamagnetic compounds. The influence of the electron donating ability and steric demand of the ligands on CO2/epoxide ring-opening copolymerization (ROCOP) and coupling reactions was investigated. Of the Co(ii) systems studied, complex 3, which has an amino-bis(phenolate) ligand possessing chlorine-functionalized phenolates and a pyridyl pendent group, [L3] = 2-methylene-pyridyl-N,N-bis(2-methylene-2,4-dichlorophenolate), was active for poly(cyclohexene carbonate) formation. The complex showed up to 98% epoxide conversion, up to 98% polymer selectivity and up to 97% carbonate linkages. By comparison, Co(ii) compounds 1 and 2 bearing alkyl groups on the phenolate donors were inactive for ROCOP. Structural characterization of 3 by X-ray diffraction (and supported by mass spectrometry and elemental analysis) showed the potassium acetate (KOAc), which formed as a synthetic by-product, remains coordinated to the Co[L3] unit through binding of the K+ ions to the chlorine substituents on the phenolate groups and acetate anions, resulting in a hexacobalt cluster in the solid state. Cobalt(iii) compounds were prepared from the Co(ii) complexes by aerobic oxidation in the presence of 2,4-dinitrophenol. The resulting 2,4-dinitrophenolate (2,4-DNP) complexes were diamagnetic species of which 7, possessing a dimethylamino-N,N-bis(2-methylene-2-tert-butyl-4-methyl-phenolate) ligand [L4], was characterized by single crystal X-ray diffraction. The Co(iii) complexes 5-7 were inactive for ROCOP of cyclohexene oxide or propylene oxide but were active for cyclic carbonate formation for a variety of epoxides studied. A maximum turnover frequency of 20 h-1 was attained for conversion of epichlorohydrin to (chloromethyl)ethylene carbonate.

9.
Inorg Chem ; 57(21): 13494-13504, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30351088

ABSTRACT

A series of iron(III) chloride and iron(III) µ-oxo compounds supported by tetradentate amino-bis(phenolate) ligands containing a homopiperazinyl backbone were prepared and characterized by electronic absorption spectroscopy, magnetic moment measurement, and MALDI-TOF mass spectrometry. The solid-state structures of three iron(III) µ-oxo compounds were determined by single crystal X-ray diffraction and revealed oxo-bridged bimetallic species with Fe-O-Fe angles between 171.7 and 180°, with the iron centers in distorted square pyramidal environments. Variable temperature magnetic measurements show the oxo complexes exhibit strong antiferromagnetic coupling between two high-spin S = 5/2 iron(III) centers. The oxo complexes exhibit poor activity for the reaction of carbon dioxide and epoxides in the presence of a cocatalyst, under solvent free conditions to yield cyclic carbonates. The least active iron oxo compound bears tert-butyl groups on the phenolate donors, and we propose that steric congestion around the iron center reduces catalytic activity in this case. We provide evidence that an epoxide deoxygenation step occurs when employing monometallic iron(III) chlorido species as catalysts. This affords the corresponding µ-oxo compounds which can then enter their own catalytic cycle. Deoxygenation of epoxides during their catalytic reactions with carbon dioxide is frequently overlooked and should be considered as an additional mechanistic pathway when investigating catalysts.

10.
Inorg Chem ; 57(6): 3097-3106, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29498276

ABSTRACT

A diamino-bis(phenolate) chromium(III) complex, CrCl(THF)[L], 1, where [L] = dimethylaminoethylamino- N, N-bis(2-methylene-4,6- tert-butylphenolate), has been synthesized in high yield and characterized by MALDI-TOF mass spectrometry, elemental analysis, UV-vis spectroscopy and single crystal X-ray diffraction. This complex combined with 4-dimethylaminopyridine (DMAP) or bis(triphenylphosphoranylidene)ammonium chloride or azide salts (PPNCl or PPNN3) shows improved activity over previously reported amine-bis(phenolate) chromium(III) complexes for copolymerization of cyclohexene oxide (CHO) and CO2 to yield poly(cyclohexene) carbonate (PCHC). Kinetic studies of the complex/DMAP system showed the activation energy for polycarbonate formation to be 62 kJ/mol. End group analysis of resulting polycarbonates by MALDI-TOF MS reveals either the chloride of the Cr(III) complex or the external nucleophile initiates the copolymerization reaction.

11.
ChemSusChem ; 10(6): 1266-1273, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28094470

ABSTRACT

Chromium(III) chlorido amine-bis(phenolate) complexes paired with nucleophilic co-catalysts are a promising family of catalysts for the copolymerization of CO2 and epoxides to selectively produce polycarbonates with a very high degree of carbonate linkages. Single-component catalyst systems can be prepared, where the neutral nucleophile, 4-dimethylaminopyridine (DMAP), is coordinated to the metal site to provide a stable octahedral CrIII complex. These complexes possess the potential for both anionic (from the chlorido ligand) or neutral (DMAP) nucleophilic epoxide ring-opening during the proposed rate-determining initiation step. Concentration effect studies support a first-order dependence of the polymerization rate on the concentration of single-component catalyst. End-group analysis of polycarbonates by MALDI-TOF MS indicate the presence of predominantly DMAP-initiated chains as well as the occurrence of chain-transfer events resulting in ether linkages, likely from the presence of cyclohexene diol formed by the reaction of cyclohexene oxide and adventitious water.


Subject(s)
4-Aminopyridine/analogs & derivatives , Carbon Dioxide/chemistry , Chromium/chemistry , Cyclohexenes/chemistry , Organometallic Compounds/chemistry , Polymerization , 4-Aminopyridine/chemistry , Catalysis
13.
Faraday Discuss ; 183: 31-46, 2015.
Article in English | MEDLINE | ID: mdl-26388443

ABSTRACT

Amine-bis(phenolato)chromium(III) chloride complexes, [LCrCl], are capable of catalyzing the copolymerization of cyclohexene oxide with carbon dioxide to give poly(cyclohexane) carbonate. When combined with 4-(N,N-dimethylamino)pyridine (DMAP) these catalyst systems yield low molecular weight polymers with moderately narrow polydispersities. The coordination chemistry of DMAP with five amine-bis(phenolato)chromium(III) chloride complexes was studied by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The amine-bis(phenolato) ligands were varied in the nature of their neutral pendant donor-group and include oxygen-containing tetrahydrofurfuryl and methoxyethyl moieties, or nitrogen-containing N,N-dimethylaminoethyl or 2-pyridyl moieties. The relative abundance of mono and bis(DMAP) adducts, as well as DMAP-free ions is compared under various DMAP : Cr complex ratios. The [LCr](+) cations show the ability to bind two DMAP molecules to form six-coordinate complex ions in all cases, except when the pendant group is N,N-dimethylaminoethyl (compound ). Even in the presence of a 4 : 1 ratio of DMAP to Cr, no ions corresponding to [L3Cr(DMAP)2](+) were observed for the complex containing the tertiary sp(3)-hybridized amino donor in the pendant arm. The difference in DMAP-binding ability of these compounds results in differences in catalytic activity for alternating copolymerization of CO2 and cyclohexene oxide. Kinetic investigations by infrared spectroscopy of compounds 2 and 3 show that polycarbonate formation by 3 is twice as fast as that of compound 2 and that no initiation time is observed.

14.
Dalton Trans ; 44(27): 12365-75, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-25805063

ABSTRACT

Magnesium compounds of tetradentate amino-bis(phenolato) ligands, Mg[L1] (1) and Mg[L2] (2) (where [L1] = 2-pyridyl-N,N-bis(2-methylene-4-methoxy-6-tert-butylphenolato), and [L2] = dimethylaminoethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolato)) were prepared. The proligands, H2[L1] and H2[L2] were reacted with di(n-butyl)magnesium in toluene to give the desired compounds in high yields. Compounds 1 and 2 exhibit dimeric structures in solutions of non-coordinating solvents as observed by NMR spectroscopy and in the solid state as shown by the single crystal X-ray structure of 2. These compounds exhibit good activity for rac-lactide polymerization in solution and in molten lactide.


Subject(s)
Coordination Complexes/chemistry , Dioxanes/chemistry , Magnesium/chemistry , Ligands , Polymerization
15.
Dalton Trans ; 42(10): 3504-20, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23280340

ABSTRACT

Lithium compounds of tetradentate amino-bis(phenolato)-tetrahydrofuranyl ligands, Li(2)[L1] (1) and Li(2)[L2] (2) (where [L1] = 2-tetrahydrofuranyl-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate), and [L2] = 2-tetrahydrofuranyl-N,N-bis(2-methylene-4,6-tert-butylphenolate)) were characterized by multinuclear solution NMR and solid-state (6)Li and (7)Li NMR spectroscopy. The proligands, n-propylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), (H(2)[L3]) and benzylamino-N,N-bis(2-methylene-4,6-di-tert-amylphenol), H(2)[L4] were reacted with n-butyllithium in THF to give the related dilithium compounds Li(2)[L3] (4) and Li(2)[L4] (5), respectively. The pyridine adduct of 1, (py)(2)Li(2)[L1] (3) and complexes 4 and 5 have been structurally characterized by single-crystal X-ray diffraction and NMR spectroscopy. The reactivity of these complexes for the ring-opening polymerization of rac-lactide, as well as the influences of monomer concentration, monomer/Li molar ratio, polymerization temperature and time, were studied.

16.
Dalton Trans ; 42(25): 9361-75, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23334495

ABSTRACT

Several monometallic {LO(i)}M complexes of lithium (M = Li; i = 1 (1), 2 (2), 3 (3)) or potassium (M = K, i = 3 (4)) and the heteroleptic bimetallic lithium complex {LO(3)}Li·LiN(SiMe2H)2 (5), all supported by monoanionic aminoether-phenolate {LO(i)}(-) (i = 1-3) ligands, have been synthesized and structurally characterized. A large range of coordination motifs is represented in the solid state, depending on the chelating ability of the ligand, the size of the metal and the number of metallic centres found in the complex. Pulse-gradient spin-echo NMR showed that 1-4 are monomeric in solution, irrespective of their (mono- or di)nuclearity in the solid-state. VT (7)Li and DOSY NMR measurements conducted for 5 indicated that the two Li atoms in the complex do not exchange positions even at 80 °C. Upon addition of 1-10 equiv. of BnOH, the electron-rich and sterically congested {LO(3)}Li complex (3) promotes the controlled living and immortal ring-opening polymerisation of L-lactide. The combination of polymer end-group analyses and stoichiometric model reactions unambiguously provided evidence that ROP reactions catalyzed by these two-component {LO(i)}Li/BnOH catalyst systems operate according to an activated monomer mechanism, and not via the coordination-insertion scenario frequently assumed for similar alkali phenolate-alcohol systems.


Subject(s)
Dioxanes/chemistry , Ethers/chemistry , Metals, Alkali/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Phenols/chemistry , Models, Molecular , Molecular Structure , Polymerization
17.
Dalton Trans ; 42(25): 9233-44, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23192332

ABSTRACT

A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.


Subject(s)
Carbon Dioxide/chemistry , Epoxy Compounds/chemistry , Organometallic Compounds/chemistry , Amines/chemistry , Catalysis , Chromium/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Phenols/chemistry
18.
Inorg Chem ; 51(16): 9095-103, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22867113

ABSTRACT

A diamine-bis(phenolate) chromium(III) complex, {CrCl[O(2)NN'](BuBu)}(2) catalyzes the copolymerization of cyclohexene oxide with carbon dioxide. The synthesis of this metal complex is straightforward, and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities. Structural and spectroscopic details of this complex along with its copolymerization activity for cyclohexene oxide and carbon dioxide are presented.

19.
Dalton Trans ; 41(16): 4806-16, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22388465

ABSTRACT

Eight new iron(III) amine-bis(phenolate) complexes are reported. The reaction of anhydrous FeX(3) salts (where X = Cl or Br) with the diprotonated tripodal tetradentate ligands 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L1, 2-tetrahydrofurfurylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L2, and 2-methoxyethylamino-N,N-bis(2-methylene-4,6-di-tert-butylphenol), H(2)L3, 2-methoxyethylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenol), H(2)L4 produces the trigonal bipyramidal iron(III) complexes, L1FeCl (1a), L1FeBr (1b), L2FeCl (2a), L2FeBr (2b), L3FeCl (3a), L3FeBr (3b), L4FeCl (4a), and L4FeBr (4b). All complexes have been characterized using electronic absorption spectroscopy, cyclic voltammetry and room temperature magnetic measurements. Variable temperature magnetic data were acquired for complexes 2b, 3a and 4b. Variable temperature Mössbauer spectra were obtained for 2b, 3a and 4b. Single crystal X-ray molecular structures have been determined for proligand H(2)L4 and complexes 1b, 2b, and 4b.

20.
Macromol Rapid Commun ; 33(5): 414-8, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22298497

ABSTRACT

Tetradentate amine-bis(phenolate) iron(III) halide complexes containing chloro substituents on the aromatic ring are extremely efficient catalysts for controlled radical polymerization. Molecular weights are in good agreement with theoretical values and polydispersity indexes (PDIs) are as low as 1.11 for styrene and methyl methacrylate polymerizations. Complexes containing alkyl substituents on the aromatic ring are less efficient. Kinetic data reveal activity for styrene polymerization among the fastest reported to date and initial studies implicate a multimechanism system. Despite the highly colored polymerization media, simple work-up procedures yield pure white polymers.


Subject(s)
Amines/chemistry , Free Radicals/chemistry , Iron/chemistry , Phenols/chemistry , Polymers/chemical synthesis , Kinetics , Polymerization , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...