Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
eNeuro ; 10(8)2023 08.
Article in English | MEDLINE | ID: mdl-37507227

ABSTRACT

How rapidly can the brain transform vision into action? Work in humans has established that the transformation for visually-guided reaching can be remarkably rapid, with the first phase of upper limb muscle recruitment, the express visuomotor response, beginning within less than 100 ms of visual target presentation. Such short-latency responses limit the opportunities for extensive cortical processing, leading to the hypothesis that they are generated via the subcortical tecto-reticulo-spinal pathway. Here, we examine whether nonhuman primates (NHPs) exhibit express visuomotor responses. Two male macaques made visually-guided reaches in a behavioral paradigm known to elicit express visuomotor responses in humans, while we acquired intramuscular recordings from the deltoid muscle. Across several variants of this paradigm, express visuomotor responses began within 65 ms (range: 48-91 ms) of target presentation. Although the timing of the express visuomotor response did not co-vary with reaction time, larger express visuomotor responses tended to precede shorter latency reaches. Further, we observed that the magnitude of the express visuomotor response could be muted by contextual context, although this effect was quite variable. Overall, the response properties in NHPs resemble those in humans. Our results establish a new benchmark for visuomotor transformations underlying visually-guided reaches, setting the stage for experiments that can directly compare the role of cortical and subcortical areas in reaching when time is of the essence.


Subject(s)
Muscles , Upper Extremity , Animals , Male , Humans , Macaca mulatta , Electromyography , Upper Extremity/physiology , Reaction Time/physiology , Psychomotor Performance/physiology
2.
J Neurophysiol ; 127(4): 969-983, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35294268

ABSTRACT

When required, humans can generate very short latency reaches toward visual targets, such as catching a falling cellphone. During such rapid reaches, express arm responses are the first wave of upper limb muscle recruitment, occurring ∼80-100 ms after target appearance. There is accumulating evidence that express arm responses arise from signaling along the tecto-reticulo-spinal tract, but the involvement of the reticulospinal tract has not been well studied. Since the reticulospinal tract projects bilaterally, we studied whether express arm responses would be generated bilaterally. Human participants (n = 14; 7 females) performed visually guided reaches in a modified emerging target paradigm where either arm could intercept the target. We recorded electromyographic activity bilaterally from the pectoralis major muscle. Our analysis focused on target locations where participants reached with the right arm on some trials, and the left arm on others. In support of the involvement of the reticulospinal tract, express arm responses persisted bilaterally regardless of which arm reached to the target. The latency and magnitude of the express arm response did not depend on whether the arm was chosen to reach or not. However, on the reaching arm, the magnitude of the express arm response was correlated to the level of anticipatory activity. The bilateral generation of express arm responses supports the involvement of the reticulospinal tract. We surmise that the correlation between anticipatory activity and the magnitude of express arm responses on the reaching arm arises from convergence of cortically derived signals with a parallel subcortical pathway mediating the express arm response.NEW & NOTEWORTHY Express arm responses have been proposed to arise from the tecto-reticulo-spinal tract originating within the superior colliculus, but the involvement of the reticulospinal tract has not been well studied. Here, we show these responses appear bilaterally in a task where either arm can reach to a newly appearing stimulus. Our results suggest that the most rapid visuomotor transformations for reaching are performed by a subcortical pathway.


Subject(s)
Arm , Upper Extremity , Arm/physiology , Electromyography/methods , Female , Humans , Male , Muscle, Skeletal/physiology , Muscles , Psychomotor Performance/physiology , Reaction Time/physiology , Superior Colliculi
3.
J Neurophysiol ; 126(1): 68-81, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34077283

ABSTRACT

Humans have a remarkable capacity to rapidly interact with the surrounding environment, often by transforming visual input into motor output on a moment-to-moment basis. But what visual features promote rapid reaching? High-contrast, fast-moving targets elicit strong responses in the superior colliculus (SC), a structure associated with express saccades and implicated in rapid electromyographic (EMG) responses on upper limb muscles. To test the influence of stimulus properties on rapid reaches, we had human subjects perform visually guided reaches to moving targets varied by speed (experiment 1) or speed and contrast (experiment 2) in an emerging target paradigm that has recently been shown to robustly elicit fast visuomotor responses. Our analysis focused on stimulus-locked responses (SLRs) on upper limb muscles. SLRs appear within <100 ms of target presentation, and as the first wave of muscle recruitment they have been hypothesized to arise from the SC. Across 32 subjects studied in both experiments, 97% expressed SLRs in the emerging target paradigm, whereas only 69% expressed SLRs in an immediate response paradigm toward static targets. Faster-moving targets (experiment 1) evoked large-magnitude SLRs, whereas high-contrast fast-moving targets (experiment 2) evoked short-latency, large-magnitude SLRs. In some instances, SLR magnitude exceeded the magnitude of movement-aligned activity. Both large-magnitude and short-latency SLRs were correlated with short-latency reach reaction times. Our results support the hypothesis that, in scenarios requiring expedited responses, a subcortical pathway originating in the SC elicits the earliest wave of muscle recruitment, expediting reaction times.NEW & NOTEWORTHY How does the brain rapidly transform vision into action? Here, by recording upper limb muscle activity, we find that high-contrast and fast-moving targets are highly effective at evoking rapid visually guided reaches. We surmise that a brain stem circuit originating in the superior colliculus contributes to the most rapid reaching responses. When time is of the essence, cortical areas may serve to prime this circuit and elaborate subsequent phases of recruitment.


Subject(s)
Contrast Sensitivity/physiology , Movement/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Exoskeleton Device , Female , Humans , Male , Muscle, Skeletal/physiology , Young Adult
4.
J Vis Exp ; (162)2020 08 25.
Article in English | MEDLINE | ID: mdl-32925893

ABSTRACT

To reach towards a seen object, visual information has to be transformed into motor commands. Visual information such as the object's color, shape, and size are processed and integrated within numerous brain areas, then ultimately relayed to the motor periphery. In some instances, a reaction is needed as fast as possible. These fast visuomotor transformations, and their underlying neurological substrates, are poorly understood in humans as they have lacked a reliable biomarker. Stimulus-locked responses (SLRs) are short latency (<100 ms) bursts of electromyographic (EMG) activity representing the first wave of muscle recruitment influenced by visual stimulus presentation. SLRs provide a quantifiable output of rapid visuomotor transformations, but SLRs have not been consistently observed in all subjects in past studies. Here we describe a new, behavioral paradigm featuring the sudden emergence of a moving target below an obstacle that consistently evokes robust SLRs. Human participants generated visually guided reaches toward or away from the emerging target using a robotic manipulandum while surface electrodes recorded EMG activity from the pectoralis major muscle. In comparison to previous studies that investigated SLRs using static stimuli, the SLRs evoked with this emerging target paradigm were larger, evolved earlier, and were present in all participants. Reach reaction times (RTs) were also expedited in the emerging target paradigm. This paradigm affords numerous opportunities for modification that could permit systematic study of the impact of various sensory, cognitive, and motor manipulations on fast visuomotor responses. Overall, our results demonstrate that an emerging target paradigm is capable of consistently and robustly evoking activity within a fast visuomotor system.


Subject(s)
Motor Activity/physiology , Muscles/physiology , Upper Extremity/physiology , Visual Perception/physiology , Adult , Arm/physiology , Electromyography , Female , Humans , Male , Photic Stimulation , Psychomotor Performance/physiology , ROC Curve , Reaction Time/physiology , Robotics , Task Performance and Analysis , Time Factors
5.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31488551

ABSTRACT

In situations requiring immediate action, humans can generate visually-guided responses at remarkably short latencies. Here, to better understand the visual attributes that best evoke such rapid responses, we recorded upper limb muscle activity while participants performed visually-guided reaches towards Gabor patches composed of differing spatial frequencies (SFs). We studied reaches initiated from a stable posture (experiment 1, a static condition), or during on-line reach corrections to an abruptly displaced target (experiment 2, a dynamic condition). In both experiments, we detail the latency and prevalence of stimulus-locked responses (SLRs), which are brief bursts of EMG activity that are time-locked to target presentation rather than movement onset. SLRs represent the first wave of EMG recruitment influenced by target presentation, and enable quantification of rapid visuomotor transformations. In both experiments, reach targets composed of low SFs elicited the shortest latency and most prevalent SLRs, with SLR latency increasing and SLR prevalence decreasing for reach targets composed of progressively higher SFs. SLRs could be evoked in either the static or dynamic condition, and when present in experiment 2, were associated with shorter latency and larger magnitude corrections. The results in experiment 2 are consistent with a linkage between the forces produced by SLRs and the earliest portion of on-line reach corrections. Overall, our results demonstrate that stimuli composed of low SFs preferentially evoke the most rapid visuomotor responses that, in the context of rapidly correcting an on-going reaching movement, are associated with earlier and larger on-line reach corrections.


Subject(s)
Arm/physiology , Movement/physiology , Photic Stimulation/methods , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Electromyography/methods , Female , Humans , Male , Random Allocation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL