Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 262: 110309, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32250792

ABSTRACT

Wet weather sewer overflows pose potential short-term public health risks. With increasing populations, aging infrastructure and climate change, utilities are challenged with managing sewerage infrastructure to provide optimum outcomes. This study compared how modelled public health risk profiles could change under alternative sewer overflow management strategies during 12 and 24-month rainfall-runoff events. Specifically, existing conditions were compared with both a 'business-as-usual' (BAU) sewer upgrade and a more holistic 'effects-based planning' (EBP) approach based on pumped wet weather sewage overflows directed to a local receiving waterway. Options were compared based on their efficacy to reduce manhole overflows, recreational waterway guideline exceedances and downstream recreational waterway health risks estimated through a screening-level Quantitative Microbial Risk Assessment (QMRA). Results indicated that the two management strategies would be equally effective in reducing the frequency, duration and volume of manhole sewer overflows, eliminating them in the 12-month scenarios and reducing them from >5000 m3 for the 24-month baseline scenario, to 23 and 35 m3 for BAU and EBP, respectively. Baseline, BAU and EBP scenarios produced similar hours of enterococci guideline exceedances, ranging from 1 to 4 h difference. The QMRA produced similar health risk profiles for downstream recreational waterway users for all design events, suggesting that sewer overflows are not the primary driver of public health risks during and immediately following high rainfall events. As such, QMRA provided evidence that an EBP strategy may be used to manage wet weather sewer overflows in lieu of an expensive BAU upgrade, without exacerbating the public health of downstream waterway users. Further investigation of the broader environmental health impacts of implementing this type of innovative approach is warranted. Nonetheless, this work highlights the value of integrating QMRA with other modelling approaches to guide and inform sewer overflow management.


Subject(s)
Environmental Monitoring , Rain , Risk Assessment , Sewage , Weather
3.
Water Res ; 149: 511-521, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30500686

ABSTRACT

There is a growing move towards using the quantitative polymerase chain (qPCR)-based sewage-associated marker genes to assess surface water quality. However, a lack of understanding about the persistence of many sewage-associated markers creates uncertainty for those tasked with investigating microbial water quality. In this study, we investigated the decay of two qPCR FIB [E. coli (EC), and Enterococcus spp. (ENT) 23S rRNA genes] and four sewage-associated microbial source tracking (MST) marker genes [human Bacteroides HF183 16S rRNA, adenovirus (HAdV), and polyomavirus (HPyV), and crAssphage, a recently described bacteriophage in feces], in outdoor mesocosms containing fresh and marine waters and their corresponding sediments. Decay rates of EC 23S rRNA, ENT 23S rRNA, and HF183 16S rRNA were significantly (p < 0.05) faster than the HAdV, HPyV and crAssphage markers in water samples from all mesocosms. In general, decay rates of bacterial targets were similar in the water columns of the studied mesocosms. Similarly, decay rates of viral targets were also alike in mesocosm water columns in relation to each other. The decay rates of FIB and sewage-associated markers were significantly faster in water samples compared to sediments in all three mesocosms. In the event of resuspension, FIB and marker genes from sediments can potentially recontaminate overlying waters. Thus, care should be taken when interpreting the occurrence of FIB and sewage-associated MST markers in water, which may have originated from sediments. The differential decay of these targets may also influence health outcomes and need to be considered in risk assessment models.


Subject(s)
Sewage , Water Microbiology , Bacteroides , Escherichia coli , Feces , Humans , RNA, Ribosomal, 16S
4.
Microb Risk Anal ; 9: 22-32, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30525084

ABSTRACT

The use of aquaculture is increasing to meet the growing global demand for seafood. However, the use of aquaculture for seafood production incurs potential human health risks, especially from enteric bacteria such as Salmonella spp. Salmonella spp. was the most frequently reported cause of outbreaks associated with crustaceans from 1998 to 2004. Among crustacean species, shrimp are the most economically important, internationally traded seafood commodity, and the most commonly aquaculture-raised seafood imported to the United States. To inform safe aquaculture practices, a quantitative microbial risk assessment (QMRA) was performed for wastewater-fed aquaculture, incorporating stochastic variability in shrimp growth, processing, and consumer preparation. Several scenarios including gamma irradiation, proper cooking, and improper cooking were considered in order to examine the relative importance of these practices in terms of their impact on risk. Median annual infection risks for all scenarios considered were below 10-4, however 95th percentile risks were above 10-4 annual probability of infection and 10-6 DALY per person per year for scenarios with improper cooking and lack of gamma irradiation. The greatest difference between microbiological risks for the scenarios tested was observed when comparing proper vs. improper cooking (5 to 6 orders of magnitude) and gamma irradiation (4 to 5 orders of magnitude) compared to (up to less than 1 order of magnitude) for peeling and deveining vs. peeling only. The findings from this research suggest that restriction of Salmonella spp. to low levels (median 5 to 30 per L aquaculture pond water) may be necessary for scenarios in which proper downstream food handling and processing cannot be guaranteed.

5.
Appl Microbiol Biotechnol ; 102(16): 7159-7170, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29869677

ABSTRACT

Understanding the microbial quality of recreational waters is critical to effectively managing human health risks. In recent years, the development of new molecular methods has provided scientists with alternatives to the use of culture-based fecal indicator methods for investigating sewage contamination in recreational waters. Before these methods can be formalized into guidelines, however, we must investigate their utility, including strengths and weaknesses in different environmental media. In this study, we investigated the decay of sewage-associated bacterial communities in water and sediment from three recreational areas in Southeast Queensland, Australia. Outdoor mesocosms with water and sediment samples from two marine and one freshwater sites were inoculated with untreated sewage and sampled on days 0, 1, 4, 8, 14, 28, and 50. Amplicon sequencing was performed on the DNA extracted from water and sediment samples, and SourceTracker was used to determine the decay of sewage-associated bacterial communities and how they change following a contamination event. No sewage-associated operational taxonomic units (OTUs) were detected in water and sediment samples after day 4; however, the bacterial communities remained changed from their background measures, prior to sewage amendment. Following untreated sewage inoculation, the mesocosm that had the most diverse starting bacterial community recovered to about 60% of its initial community composition, whereas the least diverse bacterial community only recovered to about 30% of its initial community composition. This suggests that a more diverse bacterial community may play an important role in water quality outcomes after sewage contamination events. Further investigation into potential links between bacterial communities and measures of fecal indicators, pathogens, and microbial source tracking (MST) markers is warranted and may provide insight for recreational water decision-makers.


Subject(s)
Bacterial Physiological Phenomena , Geologic Sediments/microbiology , Sewage/microbiology , Water Microbiology , Biodiversity , Fresh Water/microbiology , Humans , Queensland , Seawater/microbiology , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...