Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 14(7)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37504853

ABSTRACT

Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.

2.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676596

ABSTRACT

Radiation is an example of one of the techniques used for pasteurization and sterilization in various packaging systems. There is a high demand for the evaluation of the possible degradation of new composites, especially based on natural raw materials. The results of experimental research that evaluated the impact of radiation technology on biodegradable and compostable packaging materials up to 40 kGy have been presented. Two commercially available flexible composite films based on aliphatic-aromatic copolyesters (AA) were selected for the study, including one film with chitosan and starch (AA-CH-S) and the other with thermoplastic starch (AA-S). The materials were subjected to the influence of ionizing radiation from 10 to 40 kGy and then tests were carried out to check their usability as packaging material for the food industry. The results showed that the mechanical properties of AA-S films improved due to the radiation-induced cross-linking processes, while in the case of AA-CH-S films, a considerable decrease in the elongation at break was observed. The results also showed a decrease in the WVTR in the case of AA-S and no changes in barrier properties in the case of AA-CH-S. Both materials revealed no changes in the odor analyzed by sensory analysis. In the case of the AA-S films, the higher the radiation dose, the faster the biodegradation rate. In the case of the AA-CH-S film, the radiation did not affect biodegradation. The performed research enables the evaluation of the materials intended for direct contact with food. AA-CH-S was associated with unsatisfactory parameters (exceeding the overall migration limit and revealing color change during storage) while AA-S showed compliance at the level of tests carried out. The study showed that the AA-CH-S composite did not show a synergistic effect due to the presence of chitosan.

3.
Polymers (Basel) ; 13(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833186

ABSTRACT

The aim of the research was to determine the influence of chitosan type and propolis extract concentration on biological and physicochemical properties of chitosan-propolis films in terms of their applicability in food packaging. The films were prepared using three types of chitosan: from crab shells, medium and high molecular weight and propolis concentration in the range of 0.75-5.0%. The prepared polysaccharide films were tested for antimicrobial properties, oxygen transmission rate (OTR) and water vapor transmission rate (WVTR). Moreover, sorption tests and structural analysis were carried out. Microbiological tests indicated the best antimicrobial activity for the film consisting of high molecular weight chitosan and 5.0% propolis extract. Both the type of chitosan and propolis concentration affected transmission parameters-OTR and WVTR. The best barrier properties were recorded for the film composed of high molecular weight chitosan and 5.0% propolis extract. The results of sorption experiments showed a slight influence of chitosan type and a significant effect of propolis extract concentration on equilibrium moisture content of tested films. Moreover, propolis extract concentration affected monolayer water capacity (Mm) estimated using the Guggenheim, Anderson and de Boer (GAB) sorption model. The obtained results indicate that chitosan films with an addition of propolis extract are promising materials for food packaging applications, including food containing probiotic microorganisms.

4.
Foods ; 8(12)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835617

ABSTRACT

The aim of this study was to test the usability of fluorescence spectroscopy to evaluate the stability of cold-pressed rapeseed oil during storage. Freshly-pressed rapeseed oil was stored in colorless and green glass bottles exposed to light, and in darkness for a period of 6 months. The quality deterioration of oils was evaluated on the basis of several chemical parameters (peroxide value, acid value, K232 and K270, polar compounds, tocopherols, carotenoids, pheophytins, oxygen concentration) and fluorescence. Parallel factor analysis (PARAFAC) of oil excitation-emission matrices revealed the presence of four fluorophores that showed different evolution throughout the storage period. The fluorescence study provided direct information about tocopherol and pheophytin degradation and revealed formation of a new fluorescent product. Principal component analysis (PCA) performed on analytical and fluorescence data showed that oxidation was more advanced in samples exposed to light due to the photo-induced processes; only a very minor effect of the bottle color was observed. Multiple linear regression (MLR) and partial least squares regression (PLSR) on the PARAFAC scores revealed a quantitative relationship between fluorescence and some of the chemical parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...