Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687636

ABSTRACT

This paper presents an analysis of the causes of damage and fragmentation to the high-pressure turbine (HTP) disc of the RD-33 engine mounted in the MIG-29 aircraft. The authors have carried out an analysis of the changes to the structure of the disc material, both in the areas containing cracks and in the undamaged areas. The impact of structural changes on the alterations in the analysed strength properties along the disc radius was assessed. Material tests were correlated with the analysis of the recorded engine parameters, indicating potential causes of the HPT disc fragmentation.

2.
Materials (Basel) ; 15(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806579

ABSTRACT

The article presents the process of selecting and optimising artificial neural networks based on the example of determining the stress distribution in a disk-drum structure compressor stage of an aircraft turbine engine. The presented algorithm allows the determination of von Mises stress values which can be part of the penalty function for further mass optimization of the structure. A method of a parametric model description of a compressor stage is presented in order to prepare a reduced stress distribution for training artificial neural networks. A comparative analysis of selected neural network training algorithms combined with the optimisation of their structure is presented. A genetic algorithm was used to determine the optimal number of hidden layers and neurons in a layer. The objective function was to minimise the absolute value of the relative error and standard deviation of stresses determined by FEM and artificial neural networks. The results are presented in the form of the Pareto front due to the stochastic optimisation process.

3.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268985

ABSTRACT

The article is devoted to the preliminary concept of the Future Planetary Defense System (FPDS) emphasizing astroballistics. This paper is intended to support international efforts to improve the planetary security of Earth. The work covers three areas of knowledge: astronautics, astrodynamics, and astroballistics. The most important part of the presented article is dynamic, contact combat modeling against small, deformable celestial bodies. For these purposes, the original, proprietary hydrocode of the free particle method (HEFPM-G) with gravity was used. The main aim of combat is to redirect potentially hazardous objects (PHOs) to orbits safe for Earth or destroy them. This concept's first task is to find, prepare, and use dynamic three-dimensional models of the motion of celestial bodies and spacecraft or human-crewed spaceships in the solar system's relativistic frame. The second task is to prepare the FPDS' architecture and computer simulation space missions' initial concepts in the internal part of the solar system. The third and main task covers simulating, using hydrocodes, and selected methods of fighting 100 m diameter rock material asteroids.

4.
Materials (Basel) ; 14(2)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440784

ABSTRACT

The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.

SELECTION OF CITATIONS
SEARCH DETAIL
...