Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 939, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653400

ABSTRACT

In general, it is known that extreme climatic conditions such as El Niño and positive Indian Ocean Dipole (IOD+) cause prolonged drought in Indonesia's tropical peatlands so that groundwater levels (GWL) drop and peat is prone to fire. However, 27 years of GWL measurements in Central Kalimantan peat forests show the opposite condition, where the lowest GWL occurs several weeks before El Niño and after IOD+ reaches its peaks. We show that the dropped sea surface temperature anomaly induced by anomalously easterly winds along the southern Java-Sumatra occurs several weeks before the GWL drop to the lowest value. Local rainfall decreased, and GWL dropped sharply by 1.0 to 1.5 m, during the super El Niño events in 1997/98 and 2015, as well as remarkable events of IOD+ in 2019. It is suggested that the tropical peatland ecohydrological system (represented by the GWL), El Niño Southern Oscillation (ENSO), and IOD+ are teleconnected. Hence, monitoring GWL variability of peatland over the IMC is a possibility an alert for extreme climate events associated with El Niño and/or moderate IOD+.


Subject(s)
El Nino-Southern Oscillation , Groundwater , Indonesia , Seasons , Indian Ocean , Soil
2.
Sci Rep ; 11(1): 367, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431962

ABSTRACT

During the dry period of August-October 2015, a C-band Doppler weather radar of the BMKG station in a fire-prone peatland area, Palangka Raya, detected echoes with reflectivity values between - 19 and + 34 dBZ at a height below 2-3 km and a slant range of 100 km. The MERRA-2/NASA atmospheric reanalysis database is used to obtain the vertical profiles of refractive index and equivalent potential temperature of the air. The temporal variation of the radar image is due to the tropical diurnal cycle of planetary boundary layer formation, which is consistent with the results of the database analysis. The echo images are discussed in terms of Bragg scattering of microwaves at the top of the planetary boundary layer. Weather radar monitoring of the fire smoke layer-top images has a potential feasibility to support real-time management of peatland fires.

3.
Sci Rep ; 8(1): 8437, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855509

ABSTRACT

Tropical peatlands in Indonesia have been disturbed over decades and are a source of carbon dioxide (CO2) into the atmosphere by peat respiration and peatland fire. With a portable solar spectrometer, we have performed measurements of column-averaged CO2 dry-air molar mixing ratios, XCO2, in Palangka Raya, Indonesia, and quantify the emission dynamics of the peatland with use of the data for weather, fire hotspot, ground water table, local airport operation visibility and weather radar images. Total emission of CO2 from surface and underground peat fires as well as from peatland ecosystem is evaluated by day-to-day variability of XCO2. We found that the peatland fire and the net ecosystem CO2 exchange contributed with the same order of magnitude to the CO2 emission during the non-El Niño Southern Oscillation year of July 2014-August 2015.

4.
PLoS One ; 12(3): e0174388, 2017.
Article in English | MEDLINE | ID: mdl-28334021

ABSTRACT

Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.


Subject(s)
Ants/physiology , Biodiversity , Ecosystem , Fires , Forests , Isoptera/physiology , Animals
5.
Environ Entomol ; 45(5): 1170-1177, 2016 10.
Article in English | MEDLINE | ID: mdl-27550162

ABSTRACT

Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group.


Subject(s)
Biodiversity , Fires , Isoptera/classification , Animals , Indonesia , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...