Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138734

ABSTRACT

Thise research was conducted to determine the impact of the applied casting technology, mould and alloying additives on the tightness of the CuSn10 cast alloy. Under industrial conditions, a series of experimental melts were made that were characterised by varying the concentrations of the main alloying element (Sn) and the introduced alloying additives (Si, Zn, Zr). The mould was made from green sand and used the CO2 moulding process. To assess the influence of the alloying additives, a metallographic analysis of the studied alloy was carried out, and the alloy's microstructure was examined using optical and scanning electron microscopy. The introduced alloying additives affected the properties and microstructure of the studied alloy. As alloying additives, zirconium resulted in a visible refinement of the microstructure, while silicon improved the fluidity and quality of the casting's external surface. The use of alloying additives and moulds made using different technologies is intended to improve the structure of the tin bronze castings produced and to find the best solution to significantly eliminate the lack of leakage of the castings. The castings were subjected to mechanical processing, and a leak test was performed using the pressure drop method. The conducted research allowed us to determine which technology, applied to production, will bring about a reduction in the problem and will inform further investigations.

2.
Materials (Basel) ; 17(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38204085

ABSTRACT

Hoard finds from the Bronze Age have appeared all over Europe, prompting questions about their functions (either as raw materials for recycling or votive objects). The hoard trove of raw materials from Przybyslaw in Greater Poland is an interesting example of a discovery that is related to the foundry activities of Late Bronze Age and Early Iron Age communities (c. 600 BC). The deposit consists of fragments of raw materials that were damaged end products intended for smelting. The research included the characterisation of the material in terms of the variety of the raw materials that were used. The individual elements of the hoard were characterised in terms of their chemical compositions, microstructures, and properties. A range of modern instrumental research methods were used: metallographic macroscopic and microscopic observations by optical microscopy (OM), scanning electron microscopy (SEM), chemical-composition analysis by X-ray fluorescence spectroscopy (ED-XRF), X-ray microanalysis (EDS), and detailed crystallisation analysis by electron microscopy with an emphasis on electron backscatter diffraction (EBSD). As part of this study, model alloys were also prepared for two of the selected chemical compositions, (i.e., CuPbSn and CuPb). These alloys were analysed for their mechanical and technological properties. This research of the hoard from Przybyslaw (Jarocin district, Greater Poland) has contributed to the recognition and interpretation of the function and nature of the hoard by using modern research and modelling methods as a cultic raw material deposit.

3.
Materials (Basel) ; 15(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36143656

ABSTRACT

In this paper, the results from studies regarding near-eutectic Al-Si alloys with Sn as an alloying addition are presented. In most Al-Si alloys, tin is regarded as a contaminant; thus, its amount is limited to up to 0.3 wt.%. The few studies that can be found in the literature regarding the behaviour of tin in aluminium alloys suggest the beneficial effect of this element on selected properties. However, these results were obtained for hypereutectic Al-Si alloys or wrought aluminium alloys. In our studies, the influence of tin contents of up to 1.7 wt.% was determined on the AlSi10 alloy. Thermal analysis, measurements of the mechanical properties of the cast and heat-treated alloy, metallographic observations (light microscopy, scanning electron microscopy), and EDS (X-ray energy dispersive spectrometry) measurement allowed us to fully describe the effect of tin on the aluminium alloy. The results of the thermal analysis showed changes in the range of the α-Al solution crystallisation and the α+ß eutectic through a decrease in the alloy's solidification start point and eutectic solidification point. As a result, the elongation of the alloy was more than double in the AlSi10Sn1.7 alloy, with an A5 value of 8.1% and a tensile strength that was above 200 MPa.

4.
Materials (Basel) ; 14(20)2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34683534

ABSTRACT

Investigations are conducted in order to maintain or to improve the selected properties of the group of foundry copper-tin alloys with nickel and titanium additions, at a limited fraction of the critical (deficit) element such as tin. The crystallisation process, as well as changes of the microstructure and selected mechanical properties of the CuSn8 alloy-occurring due to introducing alloying additions-were analysed. Investigations of the macro and microstructure were performed using optical and scanning electron microscopy. Based on the thermal analysis and thermodynamic modelling using the CALPHAD (CALculations of PHAse Diagrams) method, the crystallisation process was analysed. The identification of phases was performed by XRD (X-ray diffraction). In addition, such parameters as tensile strength-UTS, elongation-A and hardness-HBS were tested. Under the influence of the introduced titanium, the columnar crystals are reduced due to the crystallisation of the alloy at the walls of the mould. Precipitations (intermetallic phases) crystallize first (primary). The intermetallic phases associated with the presence of the alloying elements nickel and titanium are located in the interdendritic regions. In tin bronzes with titanium additions, hardness (HBS) increases, tensile strength (UTS) negligibly decreases, while elongation (A) significantly decreases. In the case of CuSnNi bronze, the addition of 0.2 wt.% Ti increases the hardness and increases ultimate tensile strength (UTS), while reducing the elongation (A). Higher Ti additions increase HBS, slightly decrease the tensile strength, and significantly reduce the elongation.

SELECTION OF CITATIONS
SEARCH DETAIL
...