Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 10: 812429, 2022.
Article in English | MEDLINE | ID: mdl-35386207

ABSTRACT

Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortical development at birth and behavior in peri-pubescent mice. How these adverse behavioral outcomes are manifested within the brain at the time of behavioral disruption remains unknown. Methods: A transgenerational mouse model of FASD was used to generate up to a third filial generation of offspring to study. Using a multi-modal battery of behavioral assays, we assessed motor coordination/function, sensorimotor processing, risk-taking behavior, and depressive-like behavior in postnatal day (P) 20 pre-pubescent mice. Additionally, sensory neocortical area connectivity using dye tracing, neocortical gene expression using in situ RNA hybridization, and spine density of spiny stellate cells in the somatosensory cortex using Golgi-Cox staining were examined in mice at P20. Results: We found that PrEE induces behavioral abnormalities including abnormal sensorimotor processing, increased risk-taking behavior, and increased depressive-like behaviors that extend to the F3 generation in 20-day old mice. Assessment of both somatosensory and visual cortical connectivity, as well as cortical RZRß expression in pre-pubescent mice yielded no significant differences among any experimental generations. In contrast, only directly-exposed F1 mice displayed altered cortical expression of Id2 and decreased spine density among layer IV spiny stellate cells in somatosensory cortex at this pre-pubescent, post weaning age. Conclusion: Our results suggest that robust, clinically-relevant behavioral abnormalities are passed transgenerationally to the offspring of mice directly exposed to prenatal ethanol. Additionally, in contrast to our previous findings in the newborn PrEE mouse, a lack of transgenerational findings within the brain at this later age illuminates the critical need for future studies to attempt to discover the link between neurological function and the described behavioral changes. Overall, our study suggests that multi-generational effects of PrEE may have a substantial impact on human behavior as well as health and well-being and that these effects likely extend beyond early childhood.

2.
Br J Pharmacol ; 179(17): 4330-4343, 2022 09.
Article in English | MEDLINE | ID: mdl-35411600

ABSTRACT

BACKGROUND AND PURPOSE: Learned associations between environmental stimuli and drugs of abuse represent a major factor in the chronically relapsing nature of drug addiction. In drug dependent subjects these associations must be presumed to include associations linked to reversal of adverse withdrawal states by drug use-"withdrawal-associated learning" (WDL). However, their significance in drug seeking has received little experimental scrutiny. EXPERIMENTAL APPROACH: Using alcohol as a drug of abuse, the behavioural consequences of WDL were investigated in animal models of relapse and compulsive drug seeking by comparing the effects of WD L-associated stimuli versus stimuli associated with alcohol without WDL experience in nondependent and post-dependent rats. Brain sites activated by exposure to the respective stimuli were identified by c-fos immunohistochemistry. KEY RESULTS: (1) WDL-associated stimuli elicited significant alcohol seeking. In rats with WDL experience, stimuli associated with alcohol in the nondependent state no longer elicited robust alcohol seeking. (2) Responding elicited by WDL-associated stimuli, but not stimuli conditioned to alcohol in the nondependent state, was resistant to footshock punishment and increased response effort requirements for presentation of WDL-related stimuli. (3) Stimuli conditioned to alcohol in rats with a dependence but not WDL history did not sustain punished responding or tolerance of increased effort. (4) The central nucleus of the amygdala was identified as a site selectively responsive to WDL stimulus exposure. CONCLUSION AND IMPLICATIONS: Environmental stimuli associated with reversal of adverse withdrawal states by alcohol elicit compulsive-like alcohol seeking and establish WDL as a major, not well-recognized factor, in relapse vulnerability.


Subject(s)
Substance Withdrawal Syndrome , Substance-Related Disorders , Animals , Compulsive Behavior , Conditioning, Operant , Drug-Seeking Behavior , Ethanol/pharmacology , Humans , Rats , Recurrence , Self Administration
3.
Front Behav Neurosci ; 12: 200, 2018.
Article in English | MEDLINE | ID: mdl-30233337

ABSTRACT

Prenatal ethanol exposure (PrEE) produces developmental abnormalities in brain and behavior that often persist into adulthood. We have previously reported abnormal cortical gene expression, disorganized neural circuitry along with deficits in sensorimotor function and anxiety in our CD-1 murine model of fetal alcohol spectrum disorders, or FASD (El Shawa et al., 2013; Abbott et al., 2016). We have proposed that these phenotypes may underlie learning, memory, and behavioral deficits in humans with FASD. Here, we evaluate the impact of PrEE on fear memory learning, recall and amygdala development at two adult timepoints. PrEE alters learning and memory of aversive stimuli; specifically, PrEE mice, fear conditioned at postnatal day (P) 50, showed deficits in fear acquisition and memory retrieval when tested at P52 and later at P70-P72. Interestingly, this deficit in fear acquisition observed during young adulthood was not present when PrEE mice were conditioned later, at P80. These mice displayed similar levels of fear expression as controls when tested on fear memory recall. To test whether PrEE alters development of brain circuitry associated with fear conditioning and fear memory recall, we histologically examined subdivisions of the amygdala in PrEE and control mice and found long-term effects of PrEE on fear memory circuitry. Thus, results from this study will provide insight on the neurobiological and behavioral effects of PrEE and provide new information on developmental trajectories of brain dysfunction in people prenatally exposed to ethanol.

4.
Alcohol Clin Exp Res ; 40(1): 122-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26727530

ABSTRACT

BACKGROUND: In utero alcohol, or ethanol (EtOH), exposure produces developmental abnormalities in the brain of the fetus, which can result in lifelong behavioral abnormalities. Fetal alcohol spectrum disorders (FASD) is a term used to describe a range of adverse developmental conditions caused by EtOH exposure during gestation. Children diagnosed with FASD potentially exhibit a host of phenotypes including growth retardation, facial dysmorphology, central nervous system anomalies, abnormal behavior, and cognitive deficits. Previous research suggests that abnormal gene expression and circuitry in the neocortex may underlie reported disabilities of learning, memory, and behavior resulting from early exposure to alcohol (J Neurosci, 33, 2013, 18893). METHODS: Here, we utilize a mouse model of FASD to examine effects of prenatal EtOH exposure (PrEE), on brain anatomy in newborn (postnatal day [P]0), weanling (P20), and early adult (P50) mice. We correlate abnormal cortical and subcortical anatomy with atypical behavior in adult P50 PrEE mice. In this model, experimental dams self-administered a 25% EtOH solution throughout gestation (gestational days 0 to 19, day of birth), generating the exposure to the offspring. RESULTS: Results from these experiments reveal long-term alterations to cortical anatomy, including atypical developmental cortical thinning, and abnormal subcortical development as a result of in utero EtOH exposure. Furthermore, offspring exposed to EtOH during the prenatal period performed poorly on behavioral tasks measuring sensorimotor integration and anxiety. CONCLUSIONS: Insight from this study will help provide new information on developmental trajectories of PrEE and the biological etiologies of abnormal behavior in people diagnosed with FASD.


Subject(s)
Anxiety , Behavior, Animal/drug effects , Brain/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Animals , Brain/abnormalities , Brain/embryology , Cell Count , Cerebral Cortex/abnormalities , Cerebral Cortex/drug effects , Cerebral Cortex/embryology , Disease Models, Animal , Female , Mice , Organ Size , Postural Balance/drug effects , Pregnancy
6.
PLoS One ; 10(10): e0140391, 2015.
Article in English | MEDLINE | ID: mdl-26452243

ABSTRACT

Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical patterning and the establishment of areal boundaries in early development; however, the nature of the interaction between intrinsic and extrinsic processes is not well understood. In a previous study, we used a perinatal bilateral enucleation mouse model to test some aspects of this interaction by reweighting sensory input to the developing cortex. Visual deprivation at birth resulted in a shift of intraneocortical connections (INCs) that aligned with ectopic ephrin A5 expression in the same location ten days later at postnatal day (P) 10. A prevailing question remained: Does visual deprivation first induce a change in gene expression, followed by a shift in INCs, or vice versa? In the present study, we address this question by investigating the neuroanatomy and patterns of gene expression in post-natal day (P) 1 and 4 mice following bilateral enucleation at birth. Our results demonstrate a rapid reduction in dorsal lateral geniculate nucleus (dLGN) size and ephrin A5 gene expression 24-hours post-enucleation, with more profound effects apparent at P4. The reduced nuclear size and diminished gene expression mirrors subtle changes in ephrin A5 expression evident in P1 and P4 enucleated neocortex, 11 and 8 days prior to natural eye opening, respectively. Somatosensory and visual INCs were indistinguishable between P1 and P4 mice bilaterally enucleated at birth, indicating that perinatal bilateral enucleation initiates a rapid change in gene expression (within one day) followed by an alteration of sensory INCs later on (second postnatal week). With these results, we gain a deeper understanding of how gene expression and sensory input together regulate cortical arealization and plasticity during early development.


Subject(s)
Embryonic Development/genetics , Ephrin-A5/genetics , Neocortex/metabolism , Thalamus/metabolism , Animals , Embryo, Mammalian , Ephrin-A5/biosynthesis , Eye Enucleation , Female , Gene Expression Regulation, Developmental , Geniculate Bodies/metabolism , Mice , Neocortex/growth & development , Pregnancy , Somatosensory Cortex/growth & development , Somatosensory Cortex/metabolism , Thalamus/growth & development , Vision, Ocular/physiology , Visual Cortex/metabolism , Visual Cortex/physiology
7.
Front Aging Neurosci ; 7: 144, 2015.
Article in English | MEDLINE | ID: mdl-26257648

ABSTRACT

Mammalian neocortical development is regulated by neural patterning mechanisms, with distinct sensory and motor areas arising through the process of arealization. This development occurs alongside developing central or peripheral sensory systems. Specifically, the parcellation of neocortex into specific areas of distinct cytoarchitecture, connectivity and function during development is reliant upon both cortically intrinsic mechanisms, such as gene expression, and extrinsic processes, such as input from the sensory receptors. This developmental program shifts from patterning to maintenance as the animal ages and is believed to be active throughout life, where the brain's organization is stable yet plastic. In this study, we characterize the long-term effects of early removal of visual input via bilateral enucleation at birth. To understand the long-term effects of early blindness we conducted anatomical and molecular assays 18 months after enucleation, near the end of lifespan in the mouse. Bilateral enucleation early in life leads to long-term, stable size reductions of the thalamic lateral geniculate nucleus (LGN) and the primary visual cortex (V1) alongside a increase in individual whisker barrel size. Neocortical gene expression in the aging brain has not been previously identified; we document cortical expression of multiple regionalization genes. Expression patterns of Ephrin A5, COUP-TFI, and RZRß and patterns of intraneocortical connectivity (INC) are altered in the neocortices of aging blind mice. Sensory inputs from different modalities during development likely play a major role in the development of cortical areal and thalamic nuclear boundaries. We suggest that early patterning by prenatal retinal activity combined with persistent gene expression within the thalamus and cortex is sufficient to establish and preserve a small but present LGN and V1 into late adulthood.

8.
Behav Brain Res ; 246: 29-35, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23466690

ABSTRACT

Early treatment with methylphenidate has a persistent effect on the affective (i.e., anxiety- and depressive-like) behaviors of adult rats and mice. Interestingly, age at methylphenidate exposure appears to be a critical determinant influencing the expression of affective behaviors. In the present study, we exposed rats to methylphenidate during the preweanling period (i.e., PD 11-PD 20) because this ontogenetic period is analogous to early childhood in humans (an age associated with increasing methylphenidate usage). Rats were injected with methylphenidate (0, 2, or 5mg/kg) from PD 11 to PD 20 and reactivity to rewarding and aversive stimuli were measured in early adulthood. Specifically, novelty-induced CPP, sucrose preference, and elevated plus maze behavior were assessed on PD 60. Early treatment with 2 or 5mg/kg methylphenidate increased total time spent in the white compartment of the CPP chamber. This methylphenidate-induced effect occurred regardless of exposure condition. Performance on the elevated plus maze was also impacted by early methylphenidate exposure, because rats treated with 5mg/kg methylphenidate spent more time in the closed compartment of the elevated plus maze than vehicle controls. Early methylphenidate exposure did not alter sucrose preference. These data indicate that exposing rats to methylphenidate during the preweanling period differentially affects anxiety-like behavior depending on the type of anxiety-provoking stimulus. Specifically, early methylphenidate exposure decreased aversion to a bright white room when measured on a novelty-induced CPP task, whereas methylphenidate caused a long-term increase in anxiety when measured on the elevated plus maze.


Subject(s)
Central Nervous System Stimulants/pharmacology , Conditioning, Operant/drug effects , Exploratory Behavior/drug effects , Food Preferences/drug effects , Maze Learning/drug effects , Methylphenidate/pharmacology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Dose-Response Relationship, Drug , Female , Male , Rats , Rats, Sprague-Dawley , Sucrose/administration & dosage , Sweetening Agents/administration & dosage
9.
Behav Pharmacol ; 23(4): 367-79, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22732208

ABSTRACT

The ontogenetic profile of psychostimulant-induced one-trial behavioral sensitization has not been determined. The purpose of this study was to systematically assess the ontogeny of methamphetamine-induced and cocaine-induced behavioral sensitization across the preweanling and adolescent periods. To this end, rats were injected with methamphetamine, cocaine, or saline in either an activity chamber or home cage during the preweanling [postnatal day (PD) 12, PD 16, or PD 20], preadolescent (PD 24), or adolescent (PD 34) periods. One day later, rats were challenged with the same psychostimulant and locomotion was measured in an activity chamber. The results showed that methamphetamine produced one-trial locomotor sensitization on PD 13 and PD 17; whereas, cocaine-induced behavioral sensitization was only evident on PD 21. The sensitized responding of preweanling rats was not influenced by environmental context. Interestingly, preadolescent and adolescent rats did not exhibit locomotor sensitization. The latter result is generally consistent with past studies showing that rats from the middle and late adolescent periods do not exhibit cocaine-induced one-trial behavioral sensitization. The present results show that methamphetamine, as well as cocaine, can produce one-trial context-independent behavioral sensitization during early ontogeny, but sensitized responding is only apparent within a narrow developmental window.


Subject(s)
Behavior, Animal/drug effects , Cocaine/pharmacology , Methamphetamine/pharmacology , Motor Activity/drug effects , Age Factors , Animals , Central Nervous System Stimulants/pharmacology , Female , Male , Rats , Rats, Sprague-Dawley , Weaning
10.
Behav Pharmacol ; 22(7): 693-702, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21897205

ABSTRACT

During adulthood, associative learning is necessary for the expression of one-trial behavioral sensitization; however, it is uncertain whether the same associative processes are operative during the preweanling period. Two strategies were used to assess the importance of associative learning for one-trial behavioral sensitization of preweanling rats. In the initial experiments, we varied both the sequence and time interval between presentation of the conditioned stimulus (CS, novel environment) and unconditioned stimulus (US, cocaine). In the final experiment, we determined whether electroconvulsive shock-induced retrograde amnesia would disrupt one-trial behavioral sensitization. Results showed that robust-sensitized responding was apparent regardless of the sequence in which cocaine and the novel environment (the presumptive CS) were presented. Varying the time between CS and US presentation (0, 3, or 6 h) was also without effect. Results from experiment 3 showed that single or multiple electroconvulsive shock treatments did not alter the expression of the sensitized response. Therefore, these data indicated that one-trial behavioral sensitization of preweanling rats was exclusively mediated by nonassociative mechanisms and that associative processes did not modulate sensitized responding. These findings are in contrast to what is observed during adulthood, as adult rats exhibit one-trial behavioral sensitization only when associative processes are operative.


Subject(s)
Behavior, Animal/physiology , Central Nervous System Stimulants/pharmacology , Cocaine/pharmacology , Learning/physiology , Animals , Central Nervous System Sensitization/physiology , Conditioning, Classical , Conditioning, Operant , Conditioning, Psychological , Dopamine Uptake Inhibitors/pharmacology , Electroconvulsive Therapy , Electroshock/psychology , Female , Male , Mental Processes , Motor Activity , Rats , Rats, Sprague-Dawley , Time Factors , Weaning
11.
Psychopharmacology (Berl) ; 217(4): 559-71, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21537939

ABSTRACT

RATIONALE: Preweanling rats exhibit robust one-trial cocaine-induced behavioral sensitization; however, it is uncertain whether other psychostimulants can also induce sensitization in young rats using the one-trial procedure. OBJECTIVE: The purpose of this study was to determine whether methamphetamine, methylphenidate, and D: -amphetamine are capable of inducing one-trial locomotor sensitization in preweanling rats. METHODS: In a series of four experiments, rats were pretreated with cocaine (30 mg/kg), methamphetamine (2-12 mg/kg), methylphenidate (5-20 mg/kg), or amphetamine (5 mg/kg) before being placed in a novel activity chamber or the home cage on PD 19. Rats were then challenged with the same psychostimulant (20 mg/kg cocaine, 1-8 mg/kg methamphetamine, 2.5-7.5 mg/kg methylphenidate, or 1-2 mg/kg amphetamine) on PD 21, with distance traveled being measured for 180 min. In a separate experiment, rats were pretreated with methamphetamine on PD 16-19 and challenged with methamphetamine on PD 21. RESULTS: Only cocaine, but not various dose combinations of other psychostimulants, was able to produce one-trial behavioral sensitization in preweanling rats. Context-dependent locomotor sensitization was also evident if rats were pretreated with methamphetamine on PD 16-19 and tested on PD 21. CONCLUSIONS: It is uncertain why only cocaine was able to induce one-trial locomotor sensitization in preweanling rats, but it is possible that: (a) the neural circuitry mediating sensitization differs according to psychostimulant, (b) cocaine is more readily associated with environmental contexts than other psychostimulants, or (c) affinity and pharmacokinetic factors may underlie cocaine's ability to induce one-trial behavioral sensitization in preweanling rats.


Subject(s)
Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Cocaine/pharmacology , Dextroamphetamine/pharmacology , Methamphetamine/pharmacology , Methylphenidate/pharmacology , Aging/drug effects , Aging/psychology , Animals , Animals, Suckling , Dose-Response Relationship, Drug , Female , Male , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...