Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(18): 16605-16618, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30965002

ABSTRACT

Two selected and designed fluorinated cyclic phosphorus(III)-based compounds, namely 2-(2,2,3,3,3-pentafluoropropoxy)-1,3,2-dioxaphospholane (PFPOEPi) and 2-(2,2,3,3,3-pentafluoro-propoxy)-4-(trifluormethyl)-1,3,2-dioxaphospholane (PFPOEPi-1CF3), were synthesized and comprehensively characterized for high voltage application in lithium-ion batteries (LIBs). Cyclic voltammetry (CV) and constant current cycling were conducted, followed by post mortem analysis of the NMC111 electrode surface via scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). To support and complement obtained experimental results, density functional theory (DFT) calculations and molecular dynamics (MD) simulations were performed. Theoretical and experimental findings show that the considered phospholane molecule class enables high voltage LIB application by sacrificial decomposition on the cathode surface and involvement in the formation of a cathode electrode interphase (CEI) via polymerization reaction. In addition, obtained results point out that the introduction of the CF3 group has a significant influence on the formation and dynamics of the CEI as well as on the overall cell performance, as the cell impedance as well as the thickness of the CEI is increased compared to the cells containing PFPOEPi, which results in a decreased cycling performance. This systematic approach allows researchers to understand the structure-reactivity relationship of the newly synthesized compounds and helps to further tailor the vital physicochemical properties of functional electrolyte additives relevant for high voltage LIB application.

2.
Chemphyschem ; 20(5): 665-671, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30645049

ABSTRACT

A blue-light emitting material based on a boron complex containing heteroaromatic phosphonate ligand is synthesized and characterized. The Phospho-Fries rearrangement is used in the synthesis route of the ligand as a convenient method of introducing phosphonate groups into phenols. Structural, thermal and photophysical properties of the resulting oxazaborinin phosphonate compound have been characterized. DFT geometry optimizations were studied as well as the spatial position and symmetry of the HOMO and LUMO. Good thermal stability up to 250 °C enables vacuum deposition methods next to solution processing. Combining the work function with the optical band gap from UV-Vis measurements shows that band alignment is possible with standard contact materials. Photoluminescence reveals an emission peak at 428 nm, which is suitable for a blue light-emitter.

3.
Angew Chem Int Ed Engl ; 56(48): 15456-15460, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29044954

ABSTRACT

A straightforward access to a hitherto unknown C3 -symmetric tricyclic triol both in racemic and enantiopure forms has been developed. Treatment of 7-tert-butoxynorbornadiene with peroxycarboxylic acids provided mixtures of C1 - and C3 -symmetric 3,5,7-triacyloxynortricyclenes via transannular π-cyclization and replacement of the tert-butoxy group. By refluxing in formic acid, the C1 -symmetric esters were converted to the C3 -symmetric formate. Hydrolysis gave diastereoisomeric triols, which were separated by recrystallization. Enantiomer resolution via diastereoisomeric tri(O-methylmandelates) delivered the target triols on a gram scale. The pure enantiomers are useful as core units of dopants for liquid crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...