Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627370

ABSTRACT

Genome editing of farm animals has undeniable practical applications. It helps to improve production traits, enhances the economic value of livestock, and increases disease resistance. Gene-modified animals are also used for biomedical research and drug production and demonstrate the potential to be used as xenograft donors for humans. The recent discovery of site-specific nucleases that allow precision genome editing of a single-cell embryo (or embryonic stem cells) and the development of new embryological delivery manipulations have revolutionized the transgenesis field. These relatively new approaches have already proven to be efficient and reliable for genome engineering and have wide potential for use in agriculture. A number of advanced methodologies have been tested in laboratory models and might be considered for application in livestock animals. At the same time, these methods must meet the requirements of safety, efficiency and availability of their application for a wide range of farm animals. This review aims at covering a brief history of livestock animal genome engineering and outlines possible future directions to design optimal and cost-effective tools for transgenesis in farm species.

2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675301

ABSTRACT

Dietary composition substantially determines human health and affects complex diseases, including obesity, inflammation and cancer. Thus, food supplements have been widely used to accommodate dietary composition to the needs of individuals. Among the promising supplements are dietary phospholipids (PLs) that are commonly found as natural food ingredients and as emulsifier additives. The aim of the present study was to evaluate the effect of major PLs found as food supplements on the morphology of intestinal epithelial cells upon short-term and long-term high-dose feeding in mice. In the present report, the effect of short-term and long-term high dietary PL content was studied in terms of intestinal health and leaky gut syndrome in male mice. We used transmission electron microscopy to evaluate endothelial morphology at the ultrastructural level. We found mitochondrial damage and lipid droplet accumulation in the intracristal space, which rendered mitochondria more sensitive to respiratory uncoupling as shown by a mitochondrial respiration assessment in the intestinal crypts. However, this mitochondrial damage was insufficient to induce intestinal permeability. We propose that high-dose PL treatment impairs mitochondrial morphology and acts through extensive membrane utilization via the mitochondria. The data suggest that PL supplementation should be used with precaution in individuals with mitochondrial disorders.


Subject(s)
Diet , Phospholipids , Male , Humans , Mice , Animals , Phospholipids/pharmacology , Phospholipids/chemistry , Dietary Supplements , Mitochondria , Glycerophospholipids , Fatty Acids/pharmacology , Epithelial Cells
3.
Sci Rep ; 12(1): 16345, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175462

ABSTRACT

Inflammatory bowel diseases (IBD) are chronic and relapsing inflammatory disorders of the gastrointestinal tract with complex etiology and no strategies for complete cure. IBD are often complicated by mental disorders like anxiety and depression, indicating substantial shifts in the microbiota gut-brain axis. However, the mechanisms connecting IBD to mental diseases are still under debate. Here we use Muc2 knockout mouse model of chronic colitis to uncouple the effects of the intestinal microbiota on host behavior from chronic inflammation in the gut. Muc2 knockout male mice exhibit high exploratory activity, reduced anxiety-related behaviors, impaired sensorimotor gating, and altered social preference towards males and females. Microbial transfer to wild-type mice via littermate co-housing shows that colitis-associated microbiota rather than inflammation per se defines behavioral features in Muc2 colitis model. Metagenomic profiling and combination of antibiotic treatments revealed that bacterial species Akkermansia muciniphila is associated with the behavioral phenotype in mutants, and that its intestinal abundance correlates with social preference towards males. Metabolomic analysis together with pharmacological inhibition of Gly and NMDA receptors helped us to determine that brain glycine is responsible for the behavioral phenotype in Muc2 mice. Blood and brain metabolic profiles suggest that microbiota-dependent changes in choline metabolism might be involved in regulation of central glycine neurotransmission. Taken together, our data demonstrates that colitis-associated microbiota controls anxiety, sensorimotor gating and social behavior via metabolic regulation of the brain glycinergic system, providing new venues to combat neurological complications of IBD.


Subject(s)
Colitis , Fabaceae , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Brain , Choline , Female , Glycine , Inflammation , Male , Mice , Receptors, N-Methyl-D-Aspartate
4.
Biochemistry (Mosc) ; 87(4): 301-318, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35527372

ABSTRACT

Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.


Subject(s)
Fucose , Inflammatory Bowel Diseases , Microbiota , Mucin-2 , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Forkhead Transcription Factors , Fucose/administration & dosage , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa , Mice , Mice, Knockout , Models, Theoretical , Mucin-2/genetics
5.
RSC Adv ; 12(4): 2287-2291, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425256

ABSTRACT

2,5-Dimethyltetrahydrofuran (DMTHF) is deoxygenated to n-hexane with >99% selectivity at mild conditions (90 °C, 1 bar H2 pressure, fixed-bed reactor) in the presence of the bifunctional metal-acid catalyst Pt-CsPW comprising Pt and Cs2.5H0.5PW12O40 (CsPW), an acidic Cs salt of Keggin-type heteropoly acid H3PW12O40. Addition of gold to the Pt-CsPW catalyst increases the turnover rate at Pt sites more than twofold, whereas the Au alone without Pt is not active. The enhancement of catalyst activity is attributed to PtAu alloying, which is supported by STEM-EDX and XRD analysis.

6.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163658

ABSTRACT

Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.


Subject(s)
Gene Expression Regulation, Plant , Optogenetics , Plants/genetics , Research , Transgenes , Photoreceptors, Plant/chemistry , Photoreceptors, Plant/metabolism , Plants, Genetically Modified
7.
Antibiotics (Basel) ; 12(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36671254

ABSTRACT

We report a Russian case of a 61-year-old male patient with confirmed COVID-19 infection who developed nosocomial pneumonia complicated by lung abscess associated with multi-drug-resistant isolates of Klebsiella pneumoniae and Acinetobacter baumannii, which could have been provoked due to the immunosuppressive therapy. We discuss the existing literature highlighting the issue of the prudent balance between benefits and risks when prescribing immunomodulators to hospitalized patients with COVID-19 due to the risk of difficult-to-treat nosocomial infections caused by MDR Gram-negative bacterial pathogens. Currently, there is evidence of a substantial positive effect of dexamethasone on the course of COVID-19 in patients requiring supplemental oxygen or anti-interleukin-6 drugs in individuals with prominent systemic inflammation. However, it seems that in real clinical practice, the proposed criteria for initiating treatment with immunomodulators are interpreted arbitrarily, and the doses of dexamethasone can significantly exceed those recommended.

8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769112

ABSTRACT

Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic inflammation within the gastrointestinal (GI) tract. Despite the significant progress in understanding the etiology and development of treatment strategies, IBD remain incurable for thousands of patients. Metabolic deregulation is indicative of IBD, including substantial shifts in lipid metabolism. Recent data showed that changes in some phospholipids are very common in IBD patients. For instance, phosphatidylcholine (PC)/phosphatidylethanolamine (PE) and lysophosphatidylcholine (LPC)/PC ratios are associated with the severity of the inflammatory process. Composition of phospholipids also changes upon IBD towards an increase in arachidonic acid and a decrease in linoleic and a-linolenic acid levels. Moreover, an increase in certain phospholipid metabolites, such as lysophosphatidylcholine, sphingosine-1-phosphate and ceramide, can result in enhanced intestinal inflammation, malignancy, apoptosis or necroptosis. Because some phospholipids are associated with pathogenesis of IBD, they may provide a basis for new strategies to treat IBD. Current attempts are aimed at controlling phospholipid and fatty acid levels through the diet or via pharmacological manipulation of lipid metabolism.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Phospholipids/metabolism , Animals , Humans , Lipid Metabolism
9.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639039

ABSTRACT

The mucus layer in the intestine plays a critical role in regulation of host-microbe interactions and maintaining homeostasis. Disruptions of the mucus layer due to genetic, environmental, or immune factors may lead to inflammatory bowel diseases (IBD). IBD frequently are accompanied with infections, and therefore are treated with antibiotics. Hence, it is important to evaluate risks of antibiotic treatment in individuals with vulnerable gut barrier and chronic inflammation. Mice with a knockout of the Muc2 gene, encoding the main glycoprotein component of the mucus, demonstrate a close contact of the microbes with the gut epithelium which leads to chronic inflammation resembling IBD. Here we demonstrate that the Muc2-/- mice harboring a gut protozoan infection Tritrichomonas sp. are susceptible to an antibiotic-induced depletion of the bacterial microbiota. Suppression of the protozoan infection with efficient metronidazole dosage or L-fucose administration resulted in amelioration of an illness observed in antibiotic-treated Muc2-/- mice. Fucose is a monosaccharide presented abundantly in gut glycoproteins, including Mucin2, and is known to be involved in host-microbe interactions, in particular in microbe adhesion. We suppose that further investigation of the role of fucose in protozoan adhesion to host cells may be of great value.


Subject(s)
Fucose/metabolism , Mucin-2/deficiency , Protozoan Infections/etiology , Protozoan Infections/metabolism , Tritrichomonas/physiology , Animals , Anti-Bacterial Agents/pharmacology , Disease Susceptibility , Female , Intestinal Mucosa/metabolism , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Mortality , Protozoan Infections/drug therapy , Protozoan Infections/mortality , Tritrichomonas/classification
10.
Animals (Basel) ; 11(6)2021 06 11.
Article in English | MEDLINE | ID: mdl-34208376

ABSTRACT

Scent signals play an important role in the life of rodents. The scent of the opposite sex can modulate immunity. In mice populations with natural specific pathogens, in males, the scent of a female leads to a redistribution of leukocytes between the lung and the blood, resistance to the influenza virus, and a decrease in antibody production, but not in the development of inflammation induced by bacterial endotoxins. This study demonstrates the effect of the scent of soiled bedding of specific pathogen-free (SPF) status female mice on the percentage of different types of leukocytes in the blood, the expression of Nos2, Arg1, and Foxp3 genes, and the presence of M1/M2 macrophages in the lungs of male BALB/c mice. The scent of the female SPF mice caused a redistribution between T- and B-cells in the blood, the increase in the expression of Nos2, Arg1 genes, and the percentage of M1 type macrophages in the lung, but did not affect the different types of T-cells in the periphery or the lungs. Activation of macrophages in the lung is part of mucosal immunity, which is necessary for males as an adaptive mechanism to prevent potential infection during the search for a sexual partner.

11.
Nutrients ; 13(3)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807914

ABSTRACT

Intestinal mucus protects epithelial and immune cells from the gut resident microorganisms, and provides growth-promoting factors as mucus-derived O-glycans for beneficial bacteria. A lack of intestinal protective mucus results in changes in the commensal microflora composition, mucosal immune system reprogramming, and inflammation. Previous work has shown that fucose, the terminal glycan chain component of the intestinal glycoprotein Mucin2, and fucoidan polysaccharides have an anti-inflammatory effect in some mouse models of colitis. This study evaluates the effect of fucose on reproductive performance in heterozygous mutant Muc2 female mice. We found that even though Muc2+/- females are physiologically indistinguishable from C57Bl/6 mice, they have a significantly reduced reproductive performance upon dietary fucose supplementation. Metagenomic analysis reveals that the otherwise healthy wild-type siblings of Muc2-/- animals have reduced numbers of some of the intestinal commensal bacterial species, compared to C57BL/6 mice. We propose that the changes in beneficial microflora affect the immune status in Muc2+/- mice, which causes implantation impairment. In accordance with this hypothesis, we find that macrophage polarization during pregnancy is impaired in Muc2+/- females upon addition of fucose. Metabolic profiling of peritoneal macrophages from Muc2+/- females reveals their predisposition towards anaerobic glycolysis in favor of oxidative phosphorylation, compared to C57BL/6-derived cells. In vitro experiments on phagocytosis activity and mitochondrial respiration suggest that fucose affects oxidative phosphorylation in a genotype-specific manner, which might interfere with implantation depending on the initial status of macrophages. This hypothesis is further confirmed in BALB/c female mice, where fucose caused pregnancy loss and opposed implantation-associated M2 macrophage polarization. Taken together, these data suggest that intestinal microflora affects host immunity and pregnancy outcome. At the same time, dietary fucose might act as a differential regulator of macrophage polarization during implantation, depending on the immune status of the host.


Subject(s)
Dietary Supplements , Fucose/adverse effects , Macrophage Activation/drug effects , Mucin-2/metabolism , Reproduction/drug effects , Animals , Embryo Implantation/drug effects , Female , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Macrophages/drug effects , Metagenomics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mucus/drug effects , Pregnancy
12.
ACS Omega ; 6(13): 9310-9318, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842800

ABSTRACT

The conversion of diethyl ether (DEE) to ethene and ethanol was studied at a gas-solid interface over bulk and supported Brønsted solid acid catalysts based on tungsten Keggin heteropoly acids (HPAs) at 130-250 °C and ambient pressure. The yield of ethene increased with increasing reaction temperature and reached 98% at 220-250 °C (WHSV = 2.2 h-1). The most active HPA catalysts were silica-supported H3PW12O40 and H4SiW12O40 and the bulk heteropoly salt Cs2.5H0.5PW12O40. The HPA catalysts outperformed zeolites HZSM-5 and USY reported elsewhere. A correlation between catalyst activity and catalyst acid strength was established, which indicates that Brønsted acid sites play an important role in DEE elimination over HPA catalysts. The results point to the reaction occurring through the consecutive reaction pathway: DEE → C2H4 + EtOH followed by EtOH → C2H4 + H2O, where ethene is both a primary product of DEE elimination and a secondary product via dehydration of the primary product EtOH. Evidence is provided that DEE elimination over bulk HPA and high-loaded HPA/SiO2 catalysts proceeds via the surface-type mechanism.

13.
Mol Biol Rep ; 48(2): 1539-1547, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33517473

ABSTRACT

The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.


Subject(s)
Gene Expression Regulation/genetics , Poly A/genetics , Polyadenylation/genetics , Transcription, Genetic , 3' Untranslated Regions , 3T3 Cells/metabolism , Animals , Genes, Reporter/genetics , HEK293 Cells , Humans , Mice , Plasmids/genetics , RNA Precursors/genetics
14.
Chem Commun (Camb) ; 57(2): 227-230, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33300904

ABSTRACT

2,5-Dimethylfuran is deoxygenated to n-hexane with 100% yield on a bifunctional Pt/C-Cs2.5H0.5PW12O40 catalyst under very mild conditions (90 °C, 1 bar H2) in a one-step gas-phase process. A proposed mechanism includes a sequence of hydrogenolysis, hydrogenation and dehydration steps occurring on Pt and proton sites of the bifunctional catalyst.

15.
Sci Rep ; 10(1): 21135, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273633

ABSTRACT

The disruption of the protective intestinal barrier-the 'leaky gut'-is a common complication of the inflammatory bowel disease. There is limited data on the mechanisms of the intestinal barrier disruption upon low-grade inflammation characteristic of patients with inflammatory bowel disease in clinical remission. Thus, animal models that recapitulate the complexity of chronic intestinal inflammation in vivo are of particular interest. In this study, we used Mucin-2 (Muc2) knockout mice predisposed to colitis to study intestinal barrier upon chronic inflammation. We used 4-kDa FITC-Dextran assay and transmission electron microscopy to demonstrate the increased intestinal permeability and morphological defects in intercellular junctions in Muc2 knockout mice. Confocal microscopy revealed the disruption of the apical F-actin cytoskeleton and delocalization of tight junction protein Claudin-3 from the membrane. We further demonstrate mitochondrial damage, impaired oxygen consumption and the reduction of the intestinal ATP content in Muc2 knockout mice. Finally, we show that chemically induced mitochondrial uncoupling in the wild type mice mimics the intestinal barrier disruption in vivo and causes partial loss of F-actin and membrane localization of Claudin-3. We propose that mitochondrial damage and metabolic shifts during chronic inflammation contribute to the leaky gut syndrome in Muc2 knockout animal model of colitis.


Subject(s)
Adenosine Triphosphate/metabolism , Colitis/genetics , Intestinal Mucosa/metabolism , Mitochondria/pathology , Mucin-2/physiology , Tight Junctions/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Knockout , Mucin-2/genetics
16.
Article in English | MEDLINE | ID: mdl-32517848

ABSTRACT

The reproducibility of results obtained with rodent models depends on the genetic purity of the strain and the stability of the environment. However, another potential factor is changes in the gut microbiota due to the transmission of mother's bacteria during embryo transfer. In this study, we demonstrate the transmission of the microbiota and immune cell blood phenotype to the offspring of 2 strains, C57BL/6JNskrc and BALB/cJNskrc, from surrogate dams of different genotypes. Interstrain embryo transfer resulted in a change in the number of Enterococcus spp. organisms, as shown by quantitative PCR analysis. The number of blood leukocytes was also affected, as estimated by flow cytometry. The number of blood leukocytes, including B cells and helper T cells, and the number of Enterococcus spp. organisms in male C57BL/6JNskrc offspring bornto BALB/cJNskrc surrogate dams became similar to those of male BALB/cJNskrc mice born to BALB/cJNskrc dams. Likewise, the same parameters of male BALB/cJNskrc mice born to C57BL/6JNskrc dams became similar to those of male C57BL/6JNskrc offspring. Researchers should be aware of the possible transmission of the dam's microbiota and immune cell phenotypes to the experimental strains when planning embryo transfer experiments, because these factors could affect the experimental outcomes or the reproducibility of experimental results.

17.
Nutrients ; 12(2)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053891

ABSTRACT

Growing evidence suggests that intestinal mucosa homeostasis impacts immunity, metabolism, the Central Nervous System (CNS), and behavior. Here, we investigated the effect of the monosaccharide fucose on inflammation, metabolism, intestinal microbiota, and social behavior in the Dextran Sulfate Sodium (DSS)-induced chronic colitis mouse model. Our data show that chronic colitis is accompanied by the decrease of the serum tryptophan level and the depletion of the intestinal microbiota, specifically tryptophan-producing E. coli and Bifidobacterium. These changes are associated with defects in the male mouse social behavior such as a lack of preference towards female bedding in an odor preference test. The addition of fucose to the test animals' diet altered the bacterial community, increased the abundance of tryptophan-producing E. coli, normalized blood tryptophan levels, and ameliorated social behavior deficits. At the same time, we observed no ameliorating effect of fucose on colon morphology and colitis. Our results suggest a possible mechanism by which intestinal inflammation affects social behavior in male mice. We propose fucose as a promising prebiotic, since it creates a favorable environment for the beneficial bacteria that promote normalization of serum tryptophan level and amelioration of the behavioral abnormalities in the odor preference test.


Subject(s)
Behavior, Animal/drug effects , Colitis/psychology , Fucose/pharmacology , Tryptophan/metabolism , Animals , Bifidobacterium/metabolism , Chronic Disease , Colitis/drug therapy , Colitis/metabolism , Colitis/microbiology , Colon/metabolism , Colon/microbiology , Dextran Sulfate/adverse effects , Disease Models, Animal , Escherichia coli/metabolism , Fucose/therapeutic use , Gastrointestinal Microbiome/drug effects , Inflammation , Intestinal Mucosa , Male , Mice, Inbred C57BL , Social Behavior
18.
BMC Genet ; 20(Suppl 1): 31, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30885138

ABSTRACT

BACKGROUND: Expression of the CNDP2 gene is frequently up- or down-regulated in different types of human cancers. However, how the product of this gene is involved in cell growth and proliferation is poorly understood. Moreover, our knowledge of the functions of the CNDP2 orthologs in well-established model organisms is scarce. In particular, the function of the D. melanogaster ortholog of CNDP2, encoded by the CG17337 gene (hereafter referred to as dCNDP2), is still unknown. RESULTS: This study was aimed at developing a set of genetic and molecular tools to study the roles of dCNDP2. We generated a dCNDP2 null mutation (hereafter ∆dCNDP2) using CRISPR/Cas9-mediated homologous recombination (HR) and found that the ∆dCNDP2 mutants are homozygous viable, morphologically normal and fertile. We also generated transgenic fly lines expressing eGFP-tagged and non-tagged dCNDP2 protein, all under the control of the UAS promoter, as well as polyclonal antibodies specific to dCNDP2. Using these tools, we demonstrate that only one of the two predicted dCNDP2 isoforms is expressed throughout the different tissues tested. dCNDP2 was detected in both the cytoplasm and the nucleus, and was found to be associated with multiple sites in the salivary gland polytene chromosomes. CONCLUSIONS: The dCNDP2 gene is not essential for fly viability under standard laboratory conditions. The subcellular localization pattern of dCNDP2 suggests that this protein might have roles in both the cytoplasm and the nucleus. The genetic and molecular tools developed in this study will allow further functional characterization of the conserved CNDP2 protein using D. melanogaster as a model system.


Subject(s)
Drosophila melanogaster/genetics , Animals , Animals, Genetically Modified , Cell Line , Cell Proliferation , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Protein Isoforms/genetics
19.
Lab Anim ; 51(3): 311-314, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27686793

ABSTRACT

Infections with Helicobacter spp. are known to have serious effects on rodent health, especially in immunocompromised animals. In this study three approaches were used to eradicate Helicobacter spp. infection in mice with a deficiency in intestinal proteoglycan (mucin2), namely triple oral antibiotic therapy (amoxicillin, clarithromycin and metronidazole), cross-fostering of neonatal pups by surrogate mothers negative for Helicobacter spp., and in vitro fertilization (IVF) with embryo transfer into Helicobacter-free mothers. However, triple antibiotic therapy in mice with mucin2 deficiency was not effective and had negative effects on reproductive performance, and high susceptibility of mucin2-deficient mice to Helicobacter spp. during the first 12 h after birth rendered cross-fostering impossible. Only IVF with embryo transfer was effective in eradicating Helicobacter infection from transgenic mice with mucin2 deficiency.


Subject(s)
Disease Models, Animal , Drug Therapy, Combination/methods , Helicobacter Infections/veterinary , Mucin-2/deficiency , Animals , Anti-Bacterial Agents , Helicobacter , Helicobacter Infections/prevention & control , Immunocompromised Host , Mice
20.
Nucleic Acids Res ; 44(12): 5646-57, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27001518

ABSTRACT

Dam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity, it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila Here, we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress possible toxic effects of Dam. In addition, we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. These new DamID tools will be valuable for the mapping of binding patterns of chromatin proteins in Drosophila tissues and especially in cell lineages.


Subject(s)
Chromatin/genetics , Chromosome Mapping , DNA Methylation/genetics , Drosophila melanogaster/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Animals , Animals, Genetically Modified/genetics , Binding Sites , Cell Lineage/genetics , Gene Expression Regulation , Ligands , Neuroglia/metabolism , Organ Specificity , Protein Binding , Protein Biosynthesis/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...