Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(5)2023 05 15.
Article in English | MEDLINE | ID: mdl-37235375

ABSTRACT

Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.


Subject(s)
Anti-Anxiety Agents , HMGB3 Protein , Sea Anemones , Toxins, Biological , Rats , Mice , Humans , Animals , Anti-Anxiety Agents/pharmacology , Sea Anemones/chemistry , Diclofenac , HMGB2 Protein , Peptides/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Toxins, Biological/pharmacology , Transcription Factors , Rodentia , Anti-Inflammatory Agents/pharmacology
2.
Biomolecules ; 12(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421718

ABSTRACT

A novel peptide AnmTX Sco 9a-1 with the ß-hairpin fold was isolated from the swimming sea anemone Stomphia coccinea (Actinostolidae family). The peptide consists of 28 amino acid residues, including modified hydroxyproline residue, and its measured molecular mass is 2960 Da. The peptide was not toxic on mice; however, it stimulated their exploratory motivation and active search behavior, and demonstrated an anti-anxiety effect. AnmTX Sco 9a-1 at doses of 0.1 and 1 mg/kg reduced the volume of edema during 24 h better than the nonsteroidal anti-inflammatory drug, Diclofenac, at dose of 1 mg/kg in a model of acute local λ-carrageenan-induced inflammation. ELISA analysis of the animal's blood showed that peptide at a dose of 1 mg/kg reduced the content of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator responsible in the edema development, up to the level of TNF-α in the intact group. Besides, AnmTX Sco 9a-1 demonstrated a significant analgesic effect on acute pain sensitivity in the carrageenan-induced thermal hyperalgesia model at doses of 0.1 and 1 mg/kg. Activity of AnmTX Sco 9a-1 was shown not to be associated with modulation of nociceptive ASIC channels.


Subject(s)
Peptides , Sea Anemones , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Edema/chemically induced , Edema/drug therapy , Peptides/chemistry , Sea Anemones/chemistry , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...