Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37374902

ABSTRACT

As indicated in the introduction to this Special Issue, as of 2020, the original genus Lactobacillus comprised over 260 recognized species, a figure which is probably much higher now [...].

2.
Microorganisms ; 10(6)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35744740

ABSTRACT

Many difficult-to-treat human infections related to catheters and other indwelling devices are caused by bacteria residing in biofilms. One of the key properties of microorganisms residing in a biofilm is decreased susceptibility towards antimicrobial agents. Therefore, many different approaches have been researched to destroy or inhibit biofilm production by bacteria. Different iminosugars (IS) were reported to inhibit biofilm formation in S. mutans, S. aureus, and P. aeruginosa. The aim of this study was to look for a spectrum of the activity in one of these IS. The iminosugar PDIA beta-1-C-propyl-1,4-dideoxy-1,4-imino-L-arabinitol was tested in vitro at the same concentration against 30 different strains of the most important Gram-negative and Gram-positive human pathogens looking for their biofilm production and viability at different time intervals. It appeared that PDIA inhibited biofilm production of Enterobacter spp., P. aeruginosa, Enterococcus spp. and S. aureus in 8 h, and Klebsiella spp., Acinetobacter spp. and S.epidermidis in 24 h. PDIA caused no growth inhibition of the tested bacteria at a concentration of 0.9 mM. Our results indicate a broad-spectrum biofilm inhibitory activity of PDIA. which may be the basis for future application studies that will help in control of the associated device and biofilm-related infections caused by a wide spectrum of the causative agents.

3.
J Clin Med ; 9(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759861

ABSTRACT

BACKGROUND: There are only a few reports in the literature about translocation of coagulase-negative staphylococci (CoNS) as a primary cause of sepsis in neonates, although CoNS are among a short list of "translocating" bacteria when present in abundance. METHODS: 468 blood samples, 119 stool samples, and 8 catheter tips, from 311 neonates, were tested for presence of microorganisms. CoNS strains isolated from the blood and stool or from blood and catheter tip of the same newborn at approximately the same time were paired and typed with PFGE (Pulse-Field Gel Electrophoresis) method. The strains were then tested for the presence of adherence genes and biofilm formation. RESULTS: The strains with identical PFGE profiles in comparison to those with non-identical profiles differed in terms of the pattern of the virulence genes and showed a lack of the genes related to adherence, but more often presence of IS256, which is related to virulence. They also were phenotypically unable to adhere to intestinal Caco2 cells. CONCLUSIONS: A considerable proportion of CoNS strains isolated from bloodstream of VLBW/LWB neonates was identical to the strains isolated from faeces of the same neonates at the same time. These observations may offer indirect evidence indicating that at least some CoNS can translocate from the gastrointestinal tract of the premature neonates into the bloodstream and thus cause generalized infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...