Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(22): 15968-15977, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38775038

ABSTRACT

Relaxation times of nuclear spins often serve as a valuable source of information on the dynamics of various biochemical processes. Measuring relaxation as a function of the external magnetic field turned out to be extremely useful for the studies of weak ligand-protein interactions. We demonstrate that observing the relaxation of the long-lived spin order instead of longitudinal magnetization extends the capability of this approach. We studied the field-dependent relaxation of the longitudinal magnetization and the singlet order (SO) of methylene protons in alanine-glycine dipeptide and citrate in the presence of human serum albumin (HSA). As a result, SO relaxation proved to be more sensitive to ligand-protein interaction, providing higher relaxation contrast for various HSA concentrations. To assess the parameters of the binding process in more details, we utilized a simple analytical relaxation model to fit the experimental field dependences for both SO and T1 relaxation. We also tested the validity of our approach in the experiments with trimethylsilylpropanoic acid (TSP) used as a competitor in ligand binding with HSA.


Subject(s)
Protein Binding , Serum Albumin, Human , Ligands , Humans , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Dipeptides/chemistry , Dipeptides/metabolism , Citric Acid/chemistry
2.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36613997

ABSTRACT

Parahydrogen-induced nuclear polarization offers a significant increase in the sensitivity of NMR spectroscopy to create new probes for medical diagnostics by magnetic resonance imaging. As precursors of the biocompatible hyperpolarized probes, unsaturated derivatives of phosphoric acid, propargyl and allyl phosphates, are proposed. The polarization transfer to 1H and 31P nuclei of the products of their hydrogenation by parahydrogen under the ALTADENA and PASADENA conditions, and by the PH-ECHO-INEPT+ pulse sequence of NMR spectroscopy, resulted in a very high signal amplification, which is among the largest for parahydrogen-induced nuclear polarization transfer to the 31P nucleus.


Subject(s)
Hydrogen , Magnetic Resonance Imaging , Hydrogen/chemistry , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Hydrogenation
3.
Phys Chem Chem Phys ; 23(37): 20936-20944, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34542122

ABSTRACT

Detailed experimental and comprehensive theoretical analysis of singlet-triplet conversion in molecular hydrogen dissolved in a solution together with organometallic complexes used in experiments with parahydrogen (the H2 molecule in its nuclear singlet spin state) is reported. We demonstrate that this conversion, which gives rise to formation of orthohydrogen (the H2 molecule in its nuclear triplet spin state), is a remarkably efficient process that strongly reduces the resulting NMR (nuclear magnetic resonance) signal enhancement, here of 15N nuclei polarized at high fields using suitable NMR pulse sequences. We make use of a simple improvement of traditional pulse sequences, utilizing a single pulse on the proton channel that gives rise to an additional strong increase of the signal. Furthermore, analysis of the enhancement as a function of the pulse length allows one to estimate the actual population of the spin states of H2. We are also able to demonstrate that the spin conversion process in H2 is strongly affected by the concentration of 15N nuclei. This observation allows us to explain the dependence of the 15N signal enhancement on the abundance of 15N isotopes.

4.
J Magn Reson ; 327: 106978, 2021 06.
Article in English | MEDLINE | ID: mdl-33957556

ABSTRACT

Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g. 13C or 15N) spin in the molecule is hyperpolarized. Here we present high field pulse methods to manipulate proton singlet order in the [1-13C]fumarate, and in particular to transfer the proton singlet order into 13C magnetization. We exploit adiabatic pulses, i.e., pulses with slowly ramped amplitude, and use constant-adiabaticity variants: the spin Hamiltonian is varied in such a way that the generalized adiabaticity parameter is time-independent. This allows for faster polarization transfer, and we achieve 96.2% transfer efficiency in thermal equilibrium experiments. We demonstrate this in experiments using hyperpolarization, and obtain 6.8% 13C polarization. This work paves the way for efficient hyperpolarization of nuclear spins in a variety of biomolecules, since the high-field pulse sequences allow individual spins to be addressed.

5.
Chemphyschem ; 22(14): 1527-1534, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33932314

ABSTRACT

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on 15 N2 -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process. Azobenzene exists in two isomers, trans and cis. We show that all nuclear spins in cis-azobenzene can be efficiently hyperpolarized by SABRE at suitable magnetic fields. Enhancement factors (relative to 9.4 T) reach up to 3000 for 15 N spins and up to 30 for the 1 H spins. We compare two approaches to observe either hyperpolarized magnetization of 15 N/1 H spins, or hyperpolarized singlet order of the 15 N spin pair. The results presented here will be useful for further experiments in which hyperpolarized cis-15 N2 -azobenzene is switched by light to trans-15 N2 -azobenzene for storing the produced hyperpolarization in the long-lived spin state of the 15 N pair of trans-15 N2 -azobenzene.

6.
Sci Rep ; 11(1): 5646, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707497

ABSTRACT

Parahydrogen-induced polarization of 13C nuclei by side-arm hydrogenation (PHIP-SAH) for [1-13C]acetate and [1-13C]pyruvate esters with application of PH-INEPT-type pulse sequences for 1H to 13C polarization transfer is reported, and its efficiency is compared with that of polarization transfer based on magnetic field cycling (MFC). The pulse-sequence transfer approach may have its merits in some applications because the entire hyperpolarization procedure is implemented directly in an NMR or MRI instrument, whereas MFC requires a controlled field variation at low magnetic fields. Optimization of the PH-INEPT-type transfer sequences resulted in 13C polarization values of 0.66 ± 0.04% and 0.19 ± 0.02% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively, which is lower than the corresponding polarization levels obtained with MFC for 1H to 13C polarization transfer (3.95 ± 0.05% and 0.65 ± 0.05% for allyl [1-13C]pyruvate and ethyl [1-13C]acetate, respectively). Nevertheless, a significant 13C NMR signal enhancement with respect to thermal polarization allowed us to perform 13C MR imaging of both biologically relevant hyperpolarized molecules which can be used to produce useful contrast agents for the in vivo imaging applications.


Subject(s)
Acetates/chemistry , Carbon Isotopes/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Pyruvic Acid/chemistry , Hydrogenation , Magnetic Fields
7.
J Chem Phys ; 153(11): 114202, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32962366

ABSTRACT

A comprehensive description of the spin dynamics underlying the formation of Ortho-Deuterium Induced Polarization (ODIP) is presented. ODIP can serve as a tool for enhancing Nuclear Magnetic Resonance (NMR) signals of 2H nuclei, being important probes of molecular structure and dynamics. To produce ODIP, in the first step, the D2 gas is brought to thermal equilibrium at low temperature, here 30 K, so that the ortho-component, corresponding to the total spin of the 2H nuclei equal to 0 and 2, is enriched, here to 92%. In the second step, the orthodeuterium molecule is attached to a substrate molecule using a suitable hydrogenation catalyst such that the symmetry of the two 2H nuclei is broken. As a result, the non-thermal spin order of orthodeuterium is converted into enhancement of observable NMR signals. In this work, we perform a theoretical study of ODIP and calculate the shape of ODIP spectra and their dependence on the magnetization flip angle. These results are compared with experiments performed for a number of substrates; good agreement between experimental and calculated ODIP spectra is found. We also discuss the performance of NMR techniques for converting anti-phase ODIP spectral patterns into in-phase patterns, which are more suitable for signal detection and for transferring ODIP to heteronuclei, here to 13C spins. Experimental procedures reported here allowed us to reach signal enhancement factors of more than 1000 for 2H nuclei in the liquid phase. These results are useful for extending the scope of spin hyperpolarization to the widely used 2H nuclei.

8.
J Magn Reson ; 309: 106594, 2019 12.
Article in English | MEDLINE | ID: mdl-31569052

ABSTRACT

In this work, we optimize the performance of a previously proposed method for transferring parahydrogen induced polarization to "insensitive" spin-1/2 NMR (Nuclear Magnetic Resonance) nuclei, which have low gyromagnetic ratio and low natural abundance. By optimizing the reaction conditions and pressure of the parahydrogen gas and using adiabatically switched radiofrequency fields we achieve high polarization transfer efficiency and report carbon spin polarization of dimethyl acetylene dicarboxylate reaching 35%, which corresponds to 13C NMR signal enhancements of about 43,000 at 9.4 Tesla. Such polarization levels allow one to work with mM concentrations at natural carbon abundance and to detect 13C NMR signal in single scan. In combination with a pseudo phase cycle, the polarization transfer method used here also enables efficient suppression of unwanted background signals.

9.
J Phys Chem A ; 122(45): 8948-8956, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30293421

ABSTRACT

We revisited only para-hydrogen spectroscopy (OPSY) for the analysis of para-hydrogen-enhanced NMR spectra at high magnetic fields. We found that the sign of the gradients and interpulse delays are pivotal for the performance of the sequence: the variant of double-quantum filter OPSY, where the second time interval is twice as long as the first one (OPSYd-12) converts the antiphase spectrum to in-phase and efficiently suppresses the background signal in a single scan better than the other variants. OPSYd-12 strongly facilitates the analysis of para-hydrogen-derived NMR spectra in homogeneous and inhomogeneous magnetic fields. Furthermore, the net magnetization produced is essential for subsequent applications such as imaging, e.g., in a reaction chamber or in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...