Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836496

ABSTRACT

An increase in the intake of legumes is recommended in the promotion of plant-sourced (PSP) rather than animal-sourced (ASP) protein intake to produce a more sustainable diet. This study evaluated the quality of novel PSP isolates from pea (PEA) and fava bean (FAVA) and an ASP isolate of whey (WHEY) and compared the magnitude and temporal pattern of peripheral arterial aminoacidemia following ingestion of 0.33 g·kg-1 body mass of protein isolate in healthy young adult men (n = 9). Total indispensable amino acids (IAA) comprised 58% (WHEY), 46% (PEA), and 42% (FAVA) of the total amino acid (AA) composition, with the ingested protein providing 108% (WHEY), 77% (PEA), and 67% (FAVA) of the recommended per diem requirement of IAA. Reflecting the AA composition, the area under the curve (∆AUC0-180), post-ingestion increase in total IAA for WHEY was 41% (p < 0.001) and 57% (p < 0.001) greater than PEA and FAVA, respectively, with PEA exceeding FAVA by 28% (p = 0.003). As a sole-source, single-dose meal-size serving, the lower total IAA for PEA and FAVA would likely evoke a reduced post-prandial anabolic capacity compared to WHEY. Incorporated into a food matrix, the promotion of PSP isolates contributes to a more sustainable diet.


Subject(s)
Vicia faba , Whey , Humans , Young Adult , Male , Animals , Whey/metabolism , Vicia faba/metabolism , Pisum sativum/metabolism , Whey Proteins/metabolism , Amino Acids , Eating
2.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079744

ABSTRACT

Dietary calcium intake is a modifiable, lifestyle factor that can affect bone health and the risk of fracture. The diurnal rhythm of bone remodelling suggests nocturnal dietary intervention to be most effective. This study investigated the effect of daily, bed-time ingestion of a calcium-fortified, milk-derived protein matrix (MBPM) or control (CON), for 24 weeks, on serum biomarkers of bone resorption (C-terminal telopeptide of type I collagen, CTX) and formation (serum pro-collagen type 1 N-terminal propeptide, P1NP), and site-specific aerial bone mineral density (BMD), trabecular bone score (TBS), in postmenopausal women with osteopenia. The MBPM supplement increased mean daily energy, protein, and calcium intake, by 11, 30, and 107%, respectively. 24-week supplementation with MBPM decreased CTX by 23%, from 0.547 (0.107) to 0.416 (0.087) ng/mL (p < 0.001) and P1NP by 17%, from 60.6 (9.1) to 49.7 (7.2) µg/L (p < 0.001). Compared to CON, MBPM induced a significantly greater reduction in serum CTX (mean (CI95%); −9 (8.6) vs. −23 (8.5)%, p = 0.025 but not P1NP −19 (8.8) vs. −17 (5.2)%, p = 0.802). No significant change in TBS, AP spine or dual femur aerial BMD was observed for CON or MBPM. This study demonstrates the potential benefit of bed-time ingestion of a calcium-fortified, milk-based protein matrix on homeostatic bone remodelling but no resultant treatment effect on site-specific BMD in postmenopausal women with osteopenia.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis, Postmenopausal , Animals , Biomarkers , Bone Density , Bone Remodeling , Calcium/pharmacology , Calcium, Dietary/pharmacology , Collagen Type I , Eating , Female , Humans , Milk , Milk Proteins/pharmacology , Postmenopause
3.
Nutrients ; 14(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36145064

ABSTRACT

The aim of the present study was to evaluate the effect of feeding fava bean (Vicia faba L.) protein (FBP) on resting and post-exercise myofibrillar fractional synthetic rate (myoFSR). In a parallel, double-blind, randomised control trial, sixteen young, healthy recreationally active adults (age = 25 (5) years, body mass = 70 (15) kg, stature = 1.72 (0.11) m, mean (SD)) ingested 0.33 g·kg-1 FBP (n = 8) or a negative control (CON, i.e., EAA-free mixture) (n = 8), immediately after a bout of unilateral knee-extensor resistance exercise. Plasma, saliva, and m. vastus lateralis muscle samples were obtained pre-ingestion and 3 h post-ingestion. MyoFSR was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Resistance exercise increased myoFSR (p = 0.012). However, ingestion of FBP did not evoke an increase in resting (FBP 29 [-5, 63] vs. CON 12 [-25, 49]%, p = 0.409, mean % change [95% CI]) or post-exercise (FBP 78 [33, 123]% vs. CON 58 [9, 107]%, p = 0.732) myoFSR. Ingestion of 0.33 g·kg-1 of FBP does not appear to enhance resting or post-exercise myoFSR in young, healthy, recreationally active adults.


Subject(s)
Resistance Training , Vicia faba , Adult , Alanine/metabolism , Deuterium/metabolism , Eating , Female , Humans , Male , Muscle, Skeletal/metabolism
4.
Nutrients ; 13(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34444928

ABSTRACT

Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes' economy as well as the performance effects in elite groups.


Subject(s)
Beta vulgaris , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Fruit and Vegetable Juices , Walking/physiology , Adult , Athletes , Humans , Male , Oxidation-Reduction , Oxygen Consumption
5.
Int J Sport Nutr Exerc Metab ; 31(6): 466-474, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34453013

ABSTRACT

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg-1·2 hr-1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg-1·2 hr-1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L-1·2 hr-1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L-1·2 hr-1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


Subject(s)
Dietary Carbohydrates , Muscle, Skeletal , Blood Glucose , Double-Blind Method , Eating , Exercise , Glycogen , Humans , Insulin , Male , Physical Endurance
6.
Nutrients ; 12(3)2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32245197

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). METHODS: In a double-blind randomised parallel group design, 16 resistance-trained men aged 18 to 35 years completed a 7-d RT protocol, consisting of three lower-body RT sessions on non-consecutive days. Participants consumed a controlled diet (146 kJ·kg-1·d-1, 1.7 g·kg-1·d-1 protein) with either a whey protein supplement or an isonitrogenous control (0.33 g·kg-1·d-1 protein). To measure myoPS, 400 ml of deuterium oxide (D2O) (70 atom %) was ingested the day prior to starting the study and m. vastus lateralis biopsies were taken before and after RT-intervention. Myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Muscle recovery parameters (i.e., countermovement jump height, isometric-squat force, muscle soreness and serum creatine kinase) were assessed daily. RESULTS: MyoFSR PRE was 1.6 (0.2) %∙d-1 (mean (SD)). Whey protein supplementation had no effect on myoFSR (p = 0.771) or any recovery parameter (p = 0.390-0.989). CONCLUSIONS: Over an intense 7-d RT protocol, 0.33 g·kg-1·d-1 of supplemental whey protein does not enhance day-to-day measures of myoPS or postexercise recovery in resistance-trained men.


Subject(s)
Dietary Supplements , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Protein Biosynthesis , Resistance Training , Whey Proteins/administration & dosage , Adolescent , Adult , Biomarkers , Gene Expression , Humans , Male , Muscle Strength , Young Adult
7.
Appl Physiol Nutr Metab ; 45(5): 564-568, 2020 May.
Article in English | MEDLINE | ID: mdl-31860332

ABSTRACT

Key opinion leaders in sport and exercise nutrition advocate for a personalised and periodised approach to dietary assessment and prescription. However, practice has not advanced to this level, making recommendations from key researchers unexploited in the applied setting. Our objective was to advance traditional nutritional assessment methods (data collection and analysis) of athletic populations to place training and competition stimulus at the core of a personalised, periodised approach. We term this approach peri-training nutrition (PTN). Novelty The PTN assessment allows researchers and practitioners to effect monitor habitual nutritional practices of athletes specific to athlete aims, training adaptation stimuli, and competitive events.


Subject(s)
Athletes , Diet/standards , Exercise/physiology , Nutrition Assessment , Humans , Monitoring, Physiologic/methods
8.
Nutrients ; 11(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331099

ABSTRACT

The aim of this study was to test the effects of two disparate isonitrogenous, isocaloric pre-exercise feeds on deuterium-oxide (D2O) derived measures of myofibrillar protein synthesis (myoPS) in humans. Methods: In a double-blind parallel group design, 22 resistance-trained men aged 18 to 35 years ingested a meal (6 kcal·kg-1, 0.8 g·kg-1 carbohydrate, 0.2 g·kg-1 fat) with 0.33 g·kg-1 nonessential amino acids blend (NEAA) or whey protein (WHEY), prior to resistance exercise (70% 1RM back-squats, 10 reps per set to failure, 25% duty cycle). Biopsies of M. vastus lateralis were obtained pre-ingestion (PRE) and +3 h post-exercise (POST). The myofibrillar fractional synthetic rate (myoFSR) was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography-pyrolysis-isotope ratio mass spectrometry (GC-Pyr-IRMS). Data are a mean percentage change (95% CI). Results: There was no discernable change in myoFSR following NEAA (10(-5, 25) %, p = 0.235), whereas an increase in myoFSR was observed after WHEY (28 (13, 43) %, p = 0.003). Conclusions: Measured by a D2O tracer technique, a disparate myoPS response was observed between NEAA and WHEY. Pre-exercise ingestion of whey protein increased post-exercise myoPS, whereas a NEAA blend did not, supporting the use of NEAA as a viable isonitrogenous negative control.


Subject(s)
Amino Acids/administration & dosage , Exercise/physiology , Muscle Proteins/biosynthesis , Myofibrils/metabolism , Whey Proteins/administration & dosage , Adolescent , Adult , Amino Acids/blood , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/blood , Double-Blind Method , Humans , Male , Protein Biosynthesis/drug effects , Resistance Training , Young Adult
9.
J Agric Food Chem ; 62(37): 9195-200, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25175906

ABSTRACT

A survey of the presence of total and hexavalent chromium in lager beers was conducted to understand the variability between different styles of lager beer packaged in glass or cans and to estimate daily intake of total Cr and hexavalent chromium from beer. Graphite-furnace atomic absorption spectroscopy using validated methodologies was applied. Selective extraction of hexavalent chromium was performed using a Chromabond NH2/500 mg column and elution with nitric acid. The detection limits were 0.26 and 0.68 µg L(-1) for total Cr and Cr(VI), respectively. The mean content of total Cr ranged between 1.13 µg L(-1) in canned pale lager and 4.32 µg L(-1) in low-alcohol beers, whereas the mean content of Cr(VI) was <2.51 µg L(-1). Considering an intake of 500 mL of beer, beer consumption can contribute approximately 2.28-8.64 and 1.6-6.17% of the recommended daily intake of chromium for women and men, respectively.


Subject(s)
Beer/analysis , Chromium/administration & dosage , Chromium/analysis , Chromium/chemistry , Diet , Female , Food Packaging/instrumentation , Glass , Humans , Male , Recommended Dietary Allowances , Reproducibility of Results , Spectrophotometry, Atomic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...