Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
IEEE Trans Vis Comput Graph ; 30(4): 1984-1997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38019636

ABSTRACT

Molecular docking is a key technique in various fields like structural biology, medicinal chemistry, and biotechnology. It is widely used for virtual screening during drug discovery, computer-assisted drug design, and protein engineering. A general molecular docking process consists of the target and ligand selection, their preparation, and the docking process itself, followed by the evaluation of the results. However, the most commonly used docking software provides no or very basic evaluation possibilities. Scripting and external molecular viewers are often used, which are not designed for an efficient analysis of docking results. Therefore, we developed InVADo, a comprehensive interactive visual analysis tool for large docking data. It consists of multiple linked 2D and 3D views. It filters and spatially clusters the data, and enriches it with post-docking analysis results of protein-ligand interactions and functional groups, to enable well-founded decision-making. In an exemplary case study, domain experts confirmed that InVADo facilitates and accelerates the analysis workflow. They rated it as a convenient, comprehensive, and feature-rich tool, especially useful for virtual screening.


Subject(s)
Computer Graphics , Software , Molecular Docking Simulation , Ligands , Drug Discovery/methods
2.
PLoS One ; 18(11): e0293592, 2023.
Article in English | MEDLINE | ID: mdl-37930950

ABSTRACT

The representations of biochemical processes must balance visual portrayals with descriptive content to be an effective learning tool. To determine what type of representation is the most suitable for education, we designed five different representations of adenosine triphosphate (ATP) synthesis and examined how they are perceived. Our representations consisted of an overview of the process in a detailed and abstract illustrative format, continuous video formats with and without narration, and a combined illustrative overview with dynamic components. The five representations were evaluated by non-experts who were randomly assigned one of them and experts who viewed and compared all five representations. Subsequently, we conducted a focus group on the outcomes of these evaluations, which gave insight into possible explanations of our results, where the non-experts preferred the detailed static representation and found the narrated video least helpful, in contradiction to the experts who favored the narrated video the most.


Subject(s)
Biochemical Phenomena , Learning , Educational Status
3.
IEEE Trans Vis Comput Graph ; 29(1): 581-590, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36155456

ABSTRACT

We present sMolBoxes, a dataflow representation for the exploration and analysis of long molecular dynamics (MD) simulations. When MD simulations reach millions of snapshots, a frame-by-frame observation is not feasible anymore. Thus, biochemists rely to a large extent only on quantitative analysis of geometric and physico-chemical properties. However, the usage of abstract methods to study inherently spatial data hinders the exploration and poses a considerable workload. sMolBoxes link quantitative analysis of a user-defined set of properties with interactive 3D visualizations. They enable visual explanations of molecular behaviors, which lead to an efficient discovery of biochemically significant parts of the MD simulation. sMolBoxes follow a node-based model for flexible definition, combination, and immediate evaluation of properties to be investigated. Progressive analytics enable fluid switching between multiple properties, which facilitates hypothesis generation. Each sMolBox provides quick insight to an observed property or function, available in more detail in the bigBox View. The case studies illustrate that even with relatively few sMolBoxes, it is possible to express complex analytical tasks, and their use in exploratory analysis is perceived as more efficient than traditional scripting-based methods.

4.
Nucleic Acids Res ; 50(W1): W465-W473, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35438789

ABSTRACT

The transplantation of loops between structurally related proteins is a compelling method to improve the activity, specificity and stability of enzymes. However, despite the interest of loop regions in protein engineering, the available methods of loop-based rational protein design are scarce. One particular difficulty related to loop engineering is the unique dynamism that enables them to exert allosteric control over the catalytic function of enzymes. Thus, when engaging in a transplantation effort, such dynamics in the context of protein structure need consideration. A second practical challenge is identifying successful excision points for the transplantation or grafting. Here, we present LoopGrafter (https://loschmidt.chemi.muni.cz/loopgrafter/), a web server that specifically guides in the loop grafting process between structurally related proteins. The server provides a step-by-step interactive procedure in which the user can successively identify loops in the two input proteins, calculate their geometries, assess their similarities and dynamics, and select a number of loops to be transplanted. All possible different chimeric proteins derived from any existing recombination point are calculated, and 3D models for each of them are constructed and energetically evaluated. The obtained results can be interactively visualized in a user-friendly graphical interface and downloaded for detailed structural analyses.


Subject(s)
Proteins , Software , Models, Molecular , Proteins/genetics , Proteins/chemistry , Protein Engineering , Internet
5.
IEEE Trans Vis Comput Graph ; 28(12): 4825-4838, 2022 12.
Article in English | MEDLINE | ID: mdl-34437064

ABSTRACT

DNA nanostructures offer promising applications, particularly in the biomedical domain, as they can be used for targeted drug delivery, construction of nanorobots, or as a basis for molecular motors. One of the most prominent techniques for assembling these structures is DNA origami. Nowadays, desktop applications are used for the in silico design of such structures. However, as such structures are often spatially complex, their assembly and analysis are complicated. Since virtual reality (VR) was proven to be advantageous for such spatial-related tasks and there are no existing VR solutions focused on this domain, we propose Vivern, a VR application that allows domain experts to design and visually examine DNA origami nanostructures. Our approach presents different abstracted visual representations of the nanostructures, various color schemes, and an ability to place several DNA nanostructures and proteins in one environment, thus allowing for the detailed analysis of complex assemblies. We also present two novel examination tools, the Magic Scale Lens and the DNA Untwister, that allow the experts to visually embed different representations into local regions to preserve the context and support detailed investigation. To showcase the capabilities of our solution, prototypes of novel nanodevices conceptualized by our collaborating experts, such as DNA-protein hybrid structures and DNA origami superstructures, are presented. Finally, the results of two rounds of evaluations are summarized. They demonstrate the advantages of our solution, especially for scenarios where current desktop tools are very limited, while also presenting possible future research directions.


Subject(s)
Computer Graphics , Nanostructures , DNA , Proteins/chemistry
6.
Article in English | MEDLINE | ID: mdl-34587016

ABSTRACT

In the process of understanding and redesigning the function of proteins in modern biochemistry, protein engineers are increasingly focusing on the exploration of regions in proteins called loops. Analyzing various characteristics of these regions helps the experts to design the transfer of the desired function from one protein to another. This process is denoted as loop grafting. As this process requires extensive manual treatment and currently there is no proper visual support for it, we designed LoopGrafter: a web-based tool that provides experts with visual support through all the loop grafting pipeline steps. The tool is logically divided into several phases, starting with the definition of two input proteins and ending with a set of grafted proteins. Each phase is supported by a specific set of abstracted 2D visual representations of loaded proteins and their loops that are interactively linked with the 3D view onto proteins. By sequentially passing through the individual phases, the user is shaping the list of loops that are potential candidates for loop grafting. In the end, the actual in-silico insertion of the loop candidates from one protein to the other is performed and the results are visually presented to the user. In this way, the fully computational rational design of proteins and their loops results in newly designed protein structures that can be further assembled and tested through in-vitro experiments. LoopGrafter was designed in tight collaboration with protein engineers, and its final appearance reflects many testing iterations. We showcase the contribution of LoopGrafter on a real case scenario and provide the readers with the experts' feedback, confirming the usefulness of our tool.

7.
IEEE Trans Vis Comput Graph ; 27(8): 3493-3504, 2021 08.
Article in English | MEDLINE | ID: mdl-32092008

ABSTRACT

We present a method for the browsing of hierarchical 3D models in which we combine the typical navigation of hierarchical structures in a 2D environment-using clicks on nodes, links, or icons-with a 3D spatial data visualization. Our approach is motivated by large molecular models, for which the traditional single-scale navigational metaphors are not suitable. Multi-scale phenomena, e. g., in astronomy or geography, are complex to navigate due to their large data spaces and multi-level organization. Models from structural biology are in addition also densely crowded in space and scale. Cutaways are needed to show individual model subparts. The camera has to support exploration on the level of a whole virus, as well as on the level of a small molecule. We address these challenges by employing HyperLabels: active labels that-in addition to their annotational role-also support user interaction. Clicks on HyperLabels select the next structure to be explored. Then, we adjust the visualization to showcase the inner composition of the selected subpart and enable further exploration. Finally, we use a breadcrumbs panel for orientation and as a mechanism to traverse upwards in the model hierarchy. We demonstrate our concept of hierarchical 3D model browsing using two exemplary models from meso-scale biology.

8.
IEEE Trans Vis Comput Graph ; 27(2): 881-890, 2021 02.
Article in English | MEDLINE | ID: mdl-33048690

ABSTRACT

The daily routine of criminal investigators consists of a thorough analysis of highly complex and heterogeneous data of crime cases. Such data can consist of case descriptions, testimonies, criminal networks, spatial and temporal information, and virtually any other data that is relevant for the case. Criminal investigators work under heavy time pressure to analyze the data for relationships, propose and verify several hypotheses, and derive conclusions, while the data can be incomplete or inconsistent and is changed and updated throughout the investigation, as new findings are added to the case. Based on a four-year intense collaboration with criminalists, we present a conceptual design for a visual tool supporting the investigation workflow and Visilant, a web-based tool for the exploration and analysis of criminal data guided by the proposed design. Visilant aims to support namely the exploratory part of the investigation pipeline, from case overview, through exploration and hypothesis generation, to the case presentation. Visilant tracks the reasoning process and as the data is changing, it informs investigators which hypotheses are affected by the data change and should be revised. The tool was evaluated by senior criminology experts within two sessions and their feedback is summarized in the paper. Additional supplementary material contains the technical details and exemplary case study.

9.
IEEE Trans Vis Comput Graph ; 27(2): 891-901, 2021 02.
Article in English | MEDLINE | ID: mdl-33048734

ABSTRACT

In the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.


Subject(s)
Computer Graphics , Proteins
10.
IEEE Trans Vis Comput Graph ; 26(1): 843-852, 2020 01.
Article in English | MEDLINE | ID: mdl-31425101

ABSTRACT

When studying multi-body protein complexes, biochemists use computational tools that can suggest hundreds or thousands of their possible spatial configurations. However, it is not feasible to experimentally verify more than only a very small subset of them. In this paper, we propose a novel multiscale visual drilldown approach that was designed in tight collaboration with proteomic experts, enabling a systematic exploration of the configuration space. Our approach takes advantage of the hierarchical structure of the data - from the whole ensemble of protein complex configurations to the individual configurations, their contact interfaces, and the interacting amino acids. Our new solution is based on interactively linked 2D and 3D views for individual hierarchy levels. At each level, we offer a set of selection and filtering operations that enable the user to narrow down the number of configurations that need to be manually scrutinized. Furthermore, we offer a dedicated filter interface, which provides the users with an overview of the applied filtering operations and enables them to examine their impact on the explored ensemble. This way, we maintain the history of the exploration process and thus enable the user to return to an earlier point of the exploration. We demonstrate the effectiveness of our approach on two case studies conducted by collaborating proteomic experts.


Subject(s)
Image Processing, Computer-Assisted/methods , Models, Molecular , Proteins/chemistry , Proteomics/methods , Algorithms , Amino Acid Sequence , Computer Graphics , Humans , Nucleosomes/chemistry , User-Computer Interface
11.
Methods Mol Biol ; 2074: 81-94, 2020.
Article in English | MEDLINE | ID: mdl-31583632

ABSTRACT

Networks of protein-protein interactions (PPI) constitute either stable or transient complexes in every cell. Most of the cellular complexes keep their function, and therefore stay similar, during evolution. The evolutionary constraints preserve most cellular functions via preservation of protein structures and interactions. The evolutionary conservation information is utilized in template-based approaches, like protein structure modeling or docking. Here we use the combination of the template-free docking method with conservation-based selection of the best docking model using our newly developed COZOID tool.We describe a step-by-step protocol for visual selection of docking models, based on their similarity to the original protein complex structure. Using the COZOID tool, we first analyze contact zones of the original complex structure and select contact amino acids for docking restraints. Then we model and dock the homologous proteins. Finally, we utilize different analytical modes of our COZOID tool to select the docking models most similar to the original complex structure.


Subject(s)
Proteins/chemistry , Databases, Protein , Humans , Protein Binding , Protein Conformation , Protein Interaction Mapping , Structural Homology, Protein
12.
J Mol Biol ; 431(6): 1049-1070, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30227136

ABSTRACT

We provide a high-level survey of multiscale molecular visualization techniques, with a focus on application-domain questions, challenges, and tasks. We provide a general introduction to molecular visualization basics and describe a number of domain-specific tasks that drive this work. These tasks, in turn, serve as the general structure of the following survey. First, we discuss methods that support the visual analysis of molecular dynamics simulations. We discuss, in particular, visual abstraction and temporal aggregation. In the second part, we survey multiscale approaches that support the design, analysis, and manipulation of DNA nanostructures and related concepts for abstraction, scale transition, scale-dependent modeling, and navigation of the resulting abstraction spaces. In the third part of the survey, we showcase approaches that support interactive exploration within large structural biology assemblies up to the size of bacterial cells. We describe fundamental rendering techniques as well as approaches for element instantiation, visibility management, visual guidance, camera control, and support of depth perception. We close the survey with a brief listing of important tools that implement many of the discussed approaches and a conclusion that provides some research challenges in the field.


Subject(s)
Molecular Dynamics Simulation , Nanostructures , Bacteria , DNA/ultrastructure , Humans , Models, Molecular , Proteins/chemistry
13.
IEEE Trans Vis Comput Graph ; 25(1): 977-986, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30130195

ABSTRACT

Labeling is intrinsically important for exploring and understanding complex environments and models in a variety of domains. We present a method for interactive labeling of crowded 3D scenes containing very many instances of objects spanning multiple scales in size. In contrast to previous labeling methods, we target cases where many instances of dozens of types are present and where the hierarchical structure of the objects in the scene presents an opportunity to choose the most suitable level for each placed label. Our solution builds on and goes beyond labeling techniques in medical 3D visualization, cartography, and biological illustrations from books and prints. In contrast to these techniques, the main characteristics of our new technique are: 1) a novel way of labeling objects as part of a bigger structure when appropriate, 2) visual clutter reduction by labeling only representative instances for each type of an object, and a strategy of selecting those. The appropriate level of label is chosen by analyzing the scene's depth buffer and the scene objects' hierarchy tree. We address the topic of communicating the parent-children relationship between labels by employing visual hierarchy concepts adapted from graphic design. Selecting representative instances considers several criteria tailored to the character of the data and is combined with a greedy optimization approach. We demonstrate the usage of our method with models from mesoscale biology where these two characteristics-multi-scale and multi-instance-are abundant, along with the fact that these scenes are extraordinarily dense.

14.
Article in English | MEDLINE | ID: mdl-30207955

ABSTRACT

The analysis of protein-ligand interactions is a time-intensive task. Researchers have to analyze multiple physico-chemical properties of the protein at once and combine them to derive conclusions about the protein-ligand interplay. Typically, several charts are inspected, and 3D animations can be played side-by-side to obtain a deeper understanding of the data. With the advances in simulation techniques, larger and larger datasets are available, with up to hundreds of thousands of steps. Unfortunately, such large trajectories are very difficult to investigate with traditional approaches. Therefore, the need for special tools that facilitate inspection of these large trajectories becomes substantial. In this paper, we present a novel system for visual exploration of very large trajectories in an interactive and user-friendly way. Several visualization motifs are automatically derived from the data to give the user the information about interactions between protein and ligand. Our system offers specialized widgets to ease and accelerate data inspection and navigation to interesting parts of the simulation. The system is suitable also for simulations where multiple ligands are involved. We have tested the usefulness of our tool on a set of datasets obtained from protein engineers, and we describe the expert feedback.

15.
Bioinformatics ; 34(20): 3586-3588, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29741570

ABSTRACT

Motivation: Studying the transport paths of ligands, solvents, or ions in transmembrane proteins and proteins with buried binding sites is fundamental to the understanding of their biological function. A detailed analysis of the structural features influencing the transport paths is also important for engineering proteins for biomedical and biotechnological applications. Results: CAVER Analyst 2.0 is a software tool for quantitative analysis and real-time visualization of tunnels and channels in static and dynamic structures. This version provides the users with many new functions, including advanced techniques for intuitive visual inspection of the spatiotemporal behavior of tunnels and channels. Novel integrated algorithms allow an efficient analysis and data reduction in large protein structures and molecular dynamic simulations. Availability and implementation: CAVER Analyst 2.0 is a multi-platform standalone Java-based application. Binaries and documentation are freely available at www.caver.cz. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Algorithms , Protein Conformation , Protein Engineering , Software
16.
BMC Bioinformatics ; 19(1): 125, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29625561

ABSTRACT

BACKGROUND: Studying the patterns of protein-protein interactions (PPIs) is fundamental for understanding the structure and function of protein complexes. The exploration of the vast space of possible mutual configurations of interacting proteins and their contact zones is very time consuming and requires the proteomic expert knowledge. RESULTS: In this paper, we propose a novel tool containing a set of visual abstraction techniques for the guided exploration of PPI configuration space. It helps proteomic experts to select the most relevant configurations and explore their contact zones at different levels of detail. The system integrates a set of methods that follow and support the workflow of proteomics experts. The first visual abstraction method, the Matrix view, is based on customized interactive heat maps and provides the users with an overview of all possible residue-residue contacts in all PPI configurations and their interactive filtering. In this step, the user can traverse all input PPI configurations and obtain an overview of their interacting amino acids. Then, the models containing a particular pair of interacting amino acids can be selectively picked and traversed. Detailed information on the individual amino acids in the contact zones and their properties is presented in the Contact-Zone list-view. The list-view provides a comparative tool to rank the best models based on the similarity of their contacts to the template-structure contacts. All these techniques are interactively linked with other proposed methods, the Exploded view and the Open-Book view, which represent individual configurations in three-dimensional space. These representations solve the high overlap problem associated with many configurations. Using these views, the structural alignment of the best models can also be visually confirmed. CONCLUSIONS: We developed a system for the exploration of large sets of protein-protein complexes in a fast and intuitive way. The usefulness of our system has been tested and verified on several docking structures covering the three major types of PPIs, including coiled-coil, pocket-string, and surface-surface interactions. Our case studies prove that our tool helps to analyse and filter protein-protein complexes in a fraction of the time compared to using previously available techniques.


Subject(s)
Protein Interaction Mapping/methods , Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Proteins/chemistry
17.
IEEE Trans Vis Comput Graph ; 24(1): 862-872, 2018 01.
Article in English | MEDLINE | ID: mdl-28866533

ABSTRACT

We present the first approach to integrative structural modeling of the biological mesoscale within an interactive visual environment. These complex models can comprise up to millions of molecules with defined atomic structures, locations, and interactions. Their construction has previously been attempted only within a non-visual and non-interactive environment. Our solution unites the modeling and visualization aspect, enabling interactive construction of atomic resolution mesoscale models of large portions of a cell. We present a novel set of GPU algorithms that build the basis for the rapid construction of complex biological structures. These structures consist of multiple membrane-enclosed compartments including both soluble molecules and fibrous structures. The compartments are defined using volume voxelization of triangulated meshes. For membranes, we present an extension of the Wang Tile concept that populates the bilayer with individual lipids. Soluble molecules are populated within compartments distributed according to a Halton sequence. Fibrous structures, such as RNA or actin filaments, are created by self-avoiding random walks. Resulting overlaps of molecules are resolved by a forced-based system. Our approach opens new possibilities to the world of interactive construction of cellular compartments. We demonstrate its effectiveness by showcasing scenes of different scale and complexity that comprise blood plasma, mycoplasma, and HIV.


Subject(s)
Computer Graphics , Data Visualization , Image Processing, Computer-Assisted/methods , Models, Biological , Algorithms , Bacteria/ultrastructure , Cell Membrane/ultrastructure , Computational Biology/methods , Humans
18.
Methods Mol Biol ; 1685: 25-42, 2018.
Article in English | MEDLINE | ID: mdl-29086302

ABSTRACT

Protein tunnels connecting the functional buried cavities with bulk solvent and protein channels, enabling the transport through biological membranes, represent the structural features that govern the exchange rates of ligands, ions, and water solvent. Tunnels and channels are present in a vast number of known proteins and provide control over their function. Modification of these structural features by protein engineering frequently provides proteins with improved properties. Here we present a detailed computational protocol employing the CAVER software that is applicable for: (1) the analysis of tunnels and channels in protein structures, and (2) the selection of hot-spot residues in tunnels or channels that can be mutagenized for improved activity, specificity, enantioselectivity, or stability.


Subject(s)
Computational Biology/methods , Protein Engineering/methods , Proteins/chemistry , Algorithms , Ligands , Models, Molecular , Protein Conformation , Software , Solvents/chemistry
19.
BMC Bioinformatics ; 18(Suppl 2): 23, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28251875

ABSTRACT

BACKGROUND: Protein function is determined by many factors, namely by its constitution, spatial arrangement, and dynamic behavior. Studying these factors helps the biochemists and biologists to better understand the protein behavior and to design proteins with modified properties. One of the most common approaches to these studies is to compare the protein structure with other molecules and to reveal similarities and differences in their polypeptide chains. RESULTS: We support the comparison process by proposing a new visualization technique that bridges the gap between traditionally used 1D and 3D representations. By introducing the information about mutual positions of protein chains into the 1D sequential representation the users are able to observe the spatial differences between the proteins without any occlusion commonly present in 3D view. Our representation is designed to serve namely for comparison of multiple proteins or a set of time steps of molecular dynamics simulation. CONCLUSIONS: The novel representation is demonstrated on two usage scenarios. The first scenario aims to compare a set of proteins from the family of cytochromes P450 where the position of the secondary structures has a significant impact on the substrate channeling. The second scenario focuses on the protein flexibility when by comparing a set of time steps our representation helps to reveal the most dynamically changing parts of the protein chain.


Subject(s)
Molecular Dynamics Simulation , Protein Structure, Secondary , Algorithms , Amino Acid Sequence , Models, Molecular , Proteins/chemistry , Sequence Alignment
20.
BMC Bioinformatics ; 18(Suppl 2): 22, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28251878

ABSTRACT

BACKGROUND: Protein structures and their interaction with ligands have been in the focus of biochemistry and structural biology research for decades. The transportation of ligand into the protein active site is often complex process, driven by geometric and physico-chemical properties, which renders the ligand path full of jitter and impasses. This prevents understanding of the ligand transportation and reasoning behind its behavior along the path. RESULTS: To address the needs of the domain experts we design an explorative visualization solution based on a multi-scale simplification model. It helps to navigate the user to the most interesting parts of the ligand trajectory by exploring different attributes of the ligand and its movement, such as its distance to the active site, changes of amino acids lining the ligand, or ligand "stuckness". The process is supported by three linked views - 3D representation of the simplified trajectory, scatterplot matrix, and bar charts with line representation of ligand-lining amino acids. CONCLUSIONS: The usage of our tool is demonstrated on molecular dynamics simulations provided by the domain experts. The tool was tested by the domain experts from protein engineering and the results confirm that it helps to navigate the user to the most interesting parts of the ligand trajectory and to understand the ligand behavior.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Amino Acids/chemistry , Catalytic Domain , Image Processing, Computer-Assisted , Ligands , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...