Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(32): 12674-12682, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37531606

ABSTRACT

Although magnetic order is suppressed by a strong frustration, it appears in complex forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetically frustrated two-dimensional (2D) van der Waals material CrPSe3. Polycrystalline CrPSe3 was synthesized at an optimized temperature of 700 °C to avoid the formation of any secondary phases (e.g., Cr2Se3). The antiferromagnetic transition appeared at TN ≈ 127 K with a large Curie-Weiss temperature θCW ≈ -301 K via magnetic susceptibility measurements, indicating weak frustration in CrPSe3 with a frustration factor of f (|θCW|/TN) ≈ 2.4. Evidently, the formation of a long-range incommensurate antiferromagnetic order was revealed by neutron diffraction measurements at low temperatures (below 120 K). The monoclinic crystal structure of the C2/m symmetry is preserved over the studied temperature range down to 20 K, as confirmed by Raman spectroscopy measurements. Our findings on the incommensurate antiferromagnetic order in 2D magnetic materials, not previously observed in the MPX3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.

2.
J Imaging ; 9(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37233316

ABSTRACT

The spatial arrangement of the internal pores inside several fragments of ancient cast iron cauldrons related to the medieval Golden Horde period was studied using the neutron tomography method. The high neutron penetration into a cast iron material provides sufficient data for detailed analysis of the three-dimensional imaging data. The size, elongation, and orientation distributions of the observed internal pores were obtained. As discussed, the imaging and quantitative analytical data are considered structural markers for the location of cast iron foundries, as well as a feature of the medieval casting process.

3.
Materials (Basel) ; 16(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614792

ABSTRACT

The crystal and magnetic structures of van der Waals layered ferromagnet CrBr3 were studied using X-ray powder diffraction and neutron powder diffraction at pressures up to 23 GPa at ambient temperature and up to 2.8 GPa in the temperature range 6-300 K, respectively. The vibration spectra of CrBr3 were studied using Raman spectroscopy at pressures up to 23 GPa at ambient temperature. The anomalous pressure behavior of structural parameters and vibrational modes was observed, associated with a gradual isostructural phase transition in the pressure range 2.5-7 GPa. The Curie temperature TC reduced rapidly with a pressure coefficient dTC/dP=-4.1(4) K/GPa. A full suppression of the ferromagnetic state was expected at PC~8.4 GPa, where onset of the antiferromagnetic spin arrangement or magnetically disordered state may take place. Anomalies in Raman spectra at P~15 GPa point to another possible phase transformation in CrBr3, which may be related to the proximity of metallization of this van der Waals ferromagnet.

4.
Adv Sci (Weinh) ; 10(9): e2206842, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36698300

ABSTRACT

Among the recently discovered 2D intrinsic van der Waals (vdW) magnets, Fe3 GeTe2 (FGT) has emerged as a strong candidate for spintronics applications, due to its high Curie temperature (130 - 220 K) and magnetic tunability in response to external stimuli (electrical field, light, strain). Theory predicts that the magnetism of FGT can be significantly modulated by an external strain. However, experimental evidence is needed to validate this prediction and understand the underlying mechanism of strain-mediated vdW magnetism in this system. Here, the effects of pressure (0 - 20 GPa) are elucidated on the magnetic and structural properties of Fe3 GeTe2 by means of synchrotron Mössbauer source spectroscopy, X-ray powder diffraction and Raman spectroscopy over a wide temperature range of 10 - 290 K. A strong suppression of ferromagnetic ordering is observed with increasing pressure, and a paramagnetic ground state emerges when pressure exceeds a critical value, PPM ≈ 15 GPa. The anomalous pressure dependence of structural parameters and vibrational modes is observed at PC ≈ 7 GPa and attributed to an isostructural phase transformation. Density functional theory calculations complement these experimental findings. This study highlights pressure as a driving force for magnetic quantum criticality in layered vdW magnetic systems.

5.
Langmuir ; 38(50): 15604-15613, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36507853

ABSTRACT

Manganese dioxide nanomaterials have wide applications in many areas from catalysis and Li-ion batteries to gas sensing. Understanding the crystallization pathways, morphologies, and formation of defects in their structure is particularly important but still a challenging issue. Herein, we employed an arsenal of X-ray diffraction (XRD), scanning electron microscopy (SEM), neutron diffraction, positron annihilation spectroscopies, and ab initio calculations to investigate the evolution of the morphology and structure of α-MnO2 nanomaterials prepared via reduction of KMnO4 solution with C2H5OH prior to being annealed in air at 200-600 °C. We explored a novel evolution that α-MnO2 nucleation can be formed even at room temperature and gradually developed to α-MnO2 nanorods at above 500 °C. We also found the existence of H+ or K+ ions in the [1 × 1] tunnels of α-MnO2 and observed the simultaneous presence of Mn and O vacancies in α-MnO2 crystals at low temperatures. Increasing the temperature removed these O vacancies, leaving only the Mn vacancies in the samples.

6.
J Imaging ; 8(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36135407

ABSTRACT

The development of neutron imaging facilities provides a growing range of applications in different research fields. The significance of the obtained structural information, among others, depends on the reliability of phase segmentation. We focused on the problem of pore segmentation in low-resolution images and tomography data, taking into consideration possible image corruption in the neutron tomography experiment. Two pore segmentation techniques are proposed. They are the binarization of the enhanced contrast data using the global threshold, and the segmentation using the modified watershed technique-local threshold by watershed. The proposed techniques were compared with a conventional marker-based watershed on the test images simulating low-quality tomography data and on the neutron tomography data of the samples of magnesium potassium phosphate cement (MKP). The obtained results demonstrate the advantages of the proposed techniques over the conventional watershed-based approach.

7.
J Imaging ; 8(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35324635

ABSTRACT

The rock fabric of two lamprophyre dike samples from the Koy-Tash granitoid intrusion (Koy-Tash, Jizzakh region, Uzbekistan) has been studied, using the neutron tomography method. We have performed virtual segmentation of the reconstructed 3D model of the tabular igneous intrusion and the corresponding determination of dike margins orientation. Spatial distributions of inclusions in the dike volume, as well as further analysis of size distributions and shape orientations of inclusions, have been obtained. The observed shape preferred orientations of inclusions as evidence of the magma flow-related fabric. The obtained structural data have been discussed in the frame of the models of rigid particle motion and the straining of vesicles in a moving viscous fluid.

8.
J Imaging ; 7(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34460765

ABSTRACT

The chemical and elementary composition, internal arrangement, and spatial distribution of the components of ancient Greek copper coins were studied using XRF analysis, neutron diffraction and neutron tomography methods. The studied coins are interesting from a historical and cultural point of view, as they are "Charon's obol's". These coins were discovered at the location of an ancient Greek settlement during archaeological excavations on the "Volna-1" necropolis in Krasnodar Region, Russian Federation. It was determined that the coins are mainly made of a bronze alloy, a tin content that falls in the range of 1.1(2)-7.9(3) wt.%. All coins are highly degraded; corrosion and patina areas occupy volumes from ~27 % to ~62 % of the original coin volumes. The neutron tomography method not only provided 3D data of the spatial distribution of the bronze alloy and the patina with corrosion contamination inside coin volumes, but also restored the minting pattern of several studied coins. Taking into account the obtained results, the origin and use of these coins in the light of historical and economic processes of the Bosporan Kingdom are discussed.

9.
J Imaging ; 6(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-34460591

ABSTRACT

A massive bronze battle axe from the Abashevo archaeological culture was studied using neutron tomography and manufacturing modeling from production molds. Detailed structural data were acquired to simulate and model possible injuries and wounds caused by this battle axe. We report the results of neutron tomography experiments on the bronze battle axe, as well as manufactured plastic and virtual models of the traumas obtained at different strike angles from this axe. The reconstructed 3D models of the battle axe, plastic imprint model, and real wound and trauma traces on the bones of the ancient peoples of the Abashevo archaeological culture were obtained. Skulls with traces of injuries originate from archaeological excavations of the Pepkino burial mound of the Abashevo culture in the Volga region. The reconstruction and identification of the injuries and type of weapon on the restored skulls were performed. The complementary use of 3D visualization methods allowed us to make some assumptions on the cause of death of the people of the Abashevo culture and possible intra-tribal conflict in this cultural society. The obtained structural and anthropological data can be used to develop new concepts and methods for the archaeology of conflict.

10.
Nat Commun ; 9(1): 2996, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065294

ABSTRACT

The ABO3 perovskite oxides exhibit a wide range of interesting physical phenomena remaining in the focus of extensive scientific investigations and various industrial applications. In order to form a perovskite structure, the cations occupying the A and B positions in the lattice, as a rule, should be different. Nevertheless, the unique binary perovskite manganite Mn2O3 containing the same element in both A and B positions can be synthesized under high-pressure high-temperature conditions. Here, we show that this material exhibits magnetically driven ferroelectricity and a pronounced magnetoelectric effect at low temperatures. Neutron powder diffraction revealed two intricate antiferromagnetic structures below 100 K, driven by a strong interplay between spin, charge, and orbital degrees of freedom. The peculiar multiferroicity in the Mn2O3 perovskite is ascribed to a combined effect involving several mechanisms. Our work demonstrates the potential of binary perovskite oxides for creating materials with highly promising electric and magnetic properties.

11.
Inorg Chem ; 56(11): 6251-6263, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28520414

ABSTRACT

We investigated the structural, vibrational, magnetic, and electronic properties of the recently synthesized CaCo3V4O12 double perovskite with the high-spin (HS) Co2+ ions in a square-planar oxygen coordination at extreme conditions of high pressures and low temperatures. The single-crystal X-ray diffraction and Raman spectroscopy studies up to 60 GPa showed a conservation of its cubic crystal structure but indicated a crossover near 30 GPa. Above 30 GPa, we observed both an abnormally high "compressibility" of the Co-O bonds in the square-planar oxygen coordination and a huge anisotropic displacement of HS-Co2+ ions in the direction perpendicular to the oxygen planes. Although this effect is reminiscent of a continuous HS → LS transformation of the Co2+ ions, it did not result in the anticipated shrinkage of the cell volume because of a certain "stiffing" of the bonds of the Ca and V cations. We verified that the oxidation states of all the cations did not change across this crossover, and hence, no charge-transfer effects were involved. Consequently, we proposed that CaCo3V4O12 could undergo a phase transition at which the large HS-Co2+ ions were pushed out of the oxygen planes because of lattice compression. The antiferromagnetic transition in CaCo3V4O12 at 100 K was investigated by neutron powder diffraction at ambient pressure. We established that the magnetic moments of the Co2+ ions were aligned along one of the cubic axes, and the magnetic structure had a 2-fold periodicity along this axis, compared to the crystallographic one.

12.
Nat Chem ; 8(5): 501-8, 2016 05.
Article in English | MEDLINE | ID: mdl-27102685

ABSTRACT

Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below ∼150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.

13.
J Pharm Sci ; 104(12): 4164-4169, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26367523

ABSTRACT

The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole.


Subject(s)
Fluconazole/chemistry , Crystallography, X-Ray/methods , Phase Transition , Pressure , Spectrum Analysis, Raman/methods , X-Ray Diffraction/methods
14.
J Pharm Sci ; 104(1): 81-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25393056

ABSTRACT

The crystal structure and vibrational spectra of the chlorpropamide have been studied by means of the X-ray diffraction and Raman spectroscopy at pressures up to 24.6 and 4.4 GPa, respectively. Two polymorphic phase transitions, between initial orthorhombic form-A and a monoclinic form-AI at P ∼ 1.2 GPa and, in additional, to another monoclinic form-AII at P ∼ 3.0 GPa, were observed. At pressures above 9.6 GPa, a transformation to the amorphous phase of chlorpropamide was revealed. The lattice parameters, unit cell volumes, and vibration modes as functions of pressure were obtained for the different polymorphic modifications of chlorpropamide.


Subject(s)
Chlorpropamide/chemistry , Hypoglycemic Agents/chemistry , Models, Molecular , Algorithms , Crystallography, X-Ray , Drug Compounding , Drug Stability , Molecular Conformation , Phase Transition , Pressure/adverse effects , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...