Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-28489975

ABSTRACT

The ability of a bubble column reactor (BCR) to biodegrade a mixture of styrene and acetone vapors was evaluated to determine the factors limiting the process efficiency, with a particular emphasis on the presence of degradation intermediates and oxygen levels. The results obtained under varied loadings and ratios were matched with the dissolved oxygen levels and kinetics of oxygen mass transfer, which was assessed by determination of kLa coefficients. A 1.5-L laboratory-scale BCR was operated under a constant air flow of 1.0 L.min-1, using a defined mixed microbial population as a biocatalyst. Maximum values of elimination capacities/maximum overall specific degradation rates of 75.5 gC.m-3.h-1/0.197 gC.gdw-1.h-1, 66.0 gC.m-3.h-1/0.059 gC.gdw-1.h-1, and 45.8 gC.m-3.h-1/0.027 gC.gdw-1.h-1 were observed for styrene/acetone 2:1, styrene-rich and acetone-rich mixtures, respectively, indicating significant substrate interactions and rate limitation by biological factors. The BCR removed both acetone and styrene near-quantitatively up to a relatively high organic load of 50 g.m-3.h-1. From this point, the removal efficiencies declined under increasing loading rates, accompanied by a significant drop in the dissolved oxygen concentration, showing a process transition to oxygen-limited conditions. However, the relatively efficient pollutant removal from air continued, due to significant oxygen mass transfer, up to a threshold loading rate when the accumulation of acetone and degradation intermediates in the aqueous medium became significant. These observations demonstrate that oxygen availability is the limiting factor for efficient pollutant degradation and that accumulation of intermediates may serve as an indicator of oxygen limitation. Microbial (activated sludge) analyses revealed the presence of amoebae and active nematodes that were not affected by variations in operational conditions.


Subject(s)
Acetone/analysis , Air Pollutants/analysis , Bioreactors/microbiology , Styrene/analysis , Aerobiosis , Biodegradation, Environmental , Biomass , Filtration/methods , Kinetics , Sewage/microbiology
2.
Folia Microbiol (Praha) ; 54(5): 409-14, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19937213

ABSTRACT

A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Air Pollutants/metabolism , Bioreactors/microbiology , Environmental Monitoring/methods , Hydrogen Sulfide/metabolism
3.
Folia Microbiol (Praha) ; 52(3): 253-60, 2007.
Article in English | MEDLINE | ID: mdl-17702464

ABSTRACT

Three methods, i.e. bioremediation by application of bacteria-laden agar, physical absorption of DNT by agar, or illumination by UV light were evaluated for the removal of 2,4-dinitrotoluene (DNT) from building-grade concrete. DNT biodegradation by Pseudomonas putida TOD was turned "on" and "off" by using toluene as a co-substrate thus allowing for rate-limiting step assessment. Bioremediation efficiency can be > 95-97% in 5-7 d if the process occurs at optimum growth temperature with the biological processes appearing to be rate-limiting. Sterile agar can remove up to 80% of DNT from concrete thus allowing DNT desorption and biodegradation to be conducted separately. Photoremediation results in 50% DNT removal in 9-12 d with no further removal, most likely due to mass transfer limitations.


Subject(s)
Agar/chemistry , Construction Materials/analysis , Dinitrobenzenes/metabolism , Pseudomonas putida/metabolism , Soil Pollutants/metabolism , Ultraviolet Rays , Adsorption , Biodegradation, Environmental , Catalysis , Construction Materials/radiation effects , Dinitrobenzenes/radiation effects , Environmental Pollution , Photochemistry , Soil Pollutants/radiation effects
4.
Environ Sci Technol ; 35(7): 1452-7, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11348085

ABSTRACT

A new sampling system has been designed and interfaced with high-speed gas chromatography (HSGC) to monitor and assess the performance of a trickle-bed bioreactor designed for the removal of volatile organic compounds from air. A portion of a gas stream containing styrene and toluene was sampled both before and after passing through the bioreactor by means of a dual-loop sampling system. With a frequency of as high as 2 per minute, treated and untreated samples were alternately transferred on-line to the cryofocusing injection system of a HSGC and analyzed. This analytical system generated data with less than 2% relative standard deviations for standard samples, and residual contamination of subsequent analyses from a highly concentrated sample (2,000 microg/L) was not observed. A bench-scale bioreactor with a fiber mat support was used in these studies, resulting in residence times for analytes in the bioreactor of as little as 1 s. Rapid monitoring of this system detected subtle changes in the concentration of analytes with 30 s temporal resolution. Measurements showed a statistically significant increase in the removal of styrene from 22% to 27% when water was sprayed over the immobilized bacteria for 30 min. Overall, the bioreactor removed styrene from the air stream with a specific elimination capacity of 1,700 g of styrene (m3 of biocatalyst)-1 h(-1) at a space velocity of 3,400 h(-1).


Subject(s)
Chromatography, Gas/methods , Environmental Monitoring/methods , Organic Chemicals/metabolism , Air Pollutants/metabolism , Biodegradation, Environmental , Specimen Handling , Styrene/metabolism , Toluene/metabolism , Volatilization
6.
J Bacteriol ; 177(11): 3213-9, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7768821

ABSTRACT

Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate to give two CO2 molecules. The gene for cyanase is part of the cyn operon, which includes cynT and cynS, encoding carbonic anhydrase and cyanase, respectively. Carbonic anhydrase functions to prevent depletion of cellular bicarbonate during cyanate decomposition (the product CO2 can diffuse out of the cell faster than noncatalyzed hydration back to bicarbonate). Addition of cyanate to the culture medium of a delta cynT mutant strain of E. coli (having a nonfunctional carbonic anhydrase) results in depletion of cellular bicarbonate, which leads to inhibition of growth and an inability to catalyze cyanate degradation. These effects can be overcome by aeration with a higher partial CO2 pressure (M. B. Guilloton, A. F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P. M. Anderson, and J. A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). The question considered here is why depletion of bicarbonate/CO2 due to the action of cyanase on cyanate in a delta cynT strain has such an inhibitory effect. Growth of wild-type E. coli in minimal medium under conditions of limited CO2 was severely inhibited, and this inhibition could be overcome by adding certain Krebs cycle intermediates, indicating that one consequence of limiting CO2 is inhibition of carboxylation reactions. However, supplementation of the growth medium with metabolites whose syntheses are known to depend on a carboxylation reaction was not effective in overcoming inhibition related to the bicarbonate deficiency induced in the delta cynT strain by addition of cyanate. Similar results were obtained with a deltacyn strain (since cyanase is absent, this strain does not develop a bicarbonate deficiency when cyanate is added); however, as with the deltacynT strain, a higher partial CO(2) pressure in the aerating gas or expression of carbonic anhydrase activity (which contributes to a higher intercellular concentration of bicarbonate/CO(2)) significantly reduced inhibition of growth. There appears to be competition between cyanate and bicarbonate/CO(2) at some unknown but very important site such that cyanate binding inhibits growth. These results suggest that bicarbonate/CO(2) plays a significant role in the growth of E. coli other than simply as a substrate for carboxylation reactions and that strains with mutations in the cyn operon provide a unique model system for studying aspects of the metabolism of bicarbonate/CO(2) and its regulation in bacteria.


Subject(s)
Bicarbonates/pharmacology , Carbon Dioxide/pharmacology , Carbon-Nitrogen Lyases , Cyanates/pharmacology , Escherichia coli/drug effects , Binding, Competitive , Carbonic Anhydrases/metabolism , Citric Acid Cycle , Escherichia coli/growth & development , Escherichia coli/metabolism , Lyases/metabolism , Succinates/pharmacology
7.
J Bacteriol ; 176(18): 5711-7, 1994 Sep.
Article in English | MEDLINE | ID: mdl-8083164

ABSTRACT

Cyanase catalyzes the reaction of cyanate with bicarbonate to give 2CO2. The cynS gene encoding cyanase, together with the cynT gene for carbonic anhydrase, is part of the cyn operon, the expression of which is induced in Escherichia coli by cyanate. The physiological role of carbonic anhydrase is to prevent depletion of cellular bicarbonate during cyanate decomposition due to loss of CO2 (M.B. Guilloton, A.F. Lamblin, E. I. Kozliak, M. Gerami-Nejad, C. Tu, D. Silverman, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 175:1443-1451, 1993). A delta cynT mutant strain was extremely sensitive to inhibition of growth by cyanate and did not catalyze decomposition of cyanate (even though an active cyanase was expressed) when grown at a low pCO2 (in air) but had a Cyn+ phenotype at a high pCO2. Here the expression of these two enzymes in this unusual system for cyanate degradation was characterized in more detail. Both enzymes were found to be located in the cytosol and to be present at approximately equal levels in the presence of cyanate. A delta cynT mutant strain could be complemented with high levels of expressed human carbonic anhydrase II; however, the mutant defect was not completely abolished, perhaps because the E. coli carbonic anhydrase is significantly less susceptible to inhibition by cyanate than mammalian carbonic anhydrases. The induced E. coli carbonic anhydrase appears to be particularly adapted to its function in cyanate degradation. Active cyanase remained in cells grown in the presence of either low or high pCO2 after the inducer cyanate was depleted; in contrast, carbonic anhydrase protein was degraded very rapidly (minutes) at a high pCO2 but much more slowly (hours) at a low pCO2. A physiological significance of these observations is suggested by the observation that expression of carbonic anhydrase at a high pCO2 decreased the growth rate.


Subject(s)
Carbon Dioxide , Carbon-Nitrogen Lyases , Carbonic Anhydrases/metabolism , Escherichia coli/enzymology , Lyases/metabolism , Operon/genetics , Carbonic Anhydrases/analysis , Carbonic Anhydrases/biosynthesis , Carbonic Anhydrases/genetics , Cyanates/pharmacology , Cytosol/chemistry , Enzyme Induction , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Genetic Complementation Test , Humans , Lyases/analysis , Lyases/biosynthesis , Lyases/genetics , Mutation/physiology
8.
J Bacteriol ; 175(5): 1443-51, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8444806

ABSTRACT

Cyanate induces expression of the cyn operon in Escherichia coli. The cyn operon includes the gene cynS, encoding cyanase, which catalyzes the reaction of cyanate with bicarbonate to give ammonia and carbon dioxide. A carbonic anhydrase activity was recently found to be encoded by the cynT gene, the first gene of the cyn operon; it was proposed that carbonic anhydrase prevents depletion of bicarbonate during cyanate decomposition due to loss of CO2 by diffusion out of the cell (M. B. Guilloton, J. J. Korte, A. F. Lamblin, J. A. Fuchs, and P. M. Anderson, J. Biol. Chem. 267:3731-3734, 1992). The function of the product of the third gene of this operon, cynX, is unknown. In the study reported here, the physiological roles of cynT and cynX were investigated by construction of chromosomal mutants in which each of the three genes was rendered inactive. The delta cynT chromosomal mutant expressed an active cyanase but no active carbonic anhydrase. In contrast to the wild-type strain, the growth of the delta cynT strain was inhibited by cyanate, and the mutant strain was unable to degrade cyanate and therefore could not use cyanate as the sole nitrogen source when grown at a partial CO2 pressures (pCO2) of 0.03% (air). At a high pCO2 (3%), however, the delta cynT strain behaved like the wild-type strain; it was significantly less sensitive to the toxic effects of cyanate and could degrade cyanate and use cyanate as the sole nitrogen source for growth. These results are consistent with the proposed function for carbonic anhydrase. The chromosomal mutant carrying cynS::kan expressed induced carbonic anhydrase activity but no active cyanase. The cynS::kan mutant was found to be much less sensitive to cyanate than the delta cynT mutant at a low pCO2, indicating that bicarbonate depletion due to the reaction of bicarbonate with cyanate catalyzed by cyanase is more deleterious to growth than direct inhibition by cyanate. Mutants carrying a nonfunctional cynX gene (cynX::kan and delta cynT cynX::kan) did not differ from the parental strains with respect to cyanate sensitivity, presence of carbonic anhydrase and cyanase, or degradation of cyanate by whole cells; the physiological role of the cynX product remains unknown.


Subject(s)
Carbonic Anhydrases/metabolism , Cyanates/metabolism , Escherichia coli/enzymology , Bicarbonates/metabolism , Blotting, Southern , Carbonic Anhydrases/genetics , Cloning, Molecular , Enzyme Induction , Escherichia coli/growth & development , Immunoblotting , Kinetics , Mutation , Restriction Mapping
9.
Prikl Biokhim Mikrobiol ; 27(1): 76-81, 1991.
Article in Russian | MEDLINE | ID: mdl-1903887

ABSTRACT

The growth of Pseudomonas fluorescens 16N2 on naphthalene was accompanied with accumulation of salicylate in the culture medium and induction of gentisate 1,2-dioxygenase and catechol 1,2-dioxygenase. The transformation of anthracene by the cells growing on hexadecane led to the formation of 3-hydroxy-2-naphthoate and salicylate. Pathways for naphthalene and anthracene degradation are proposed.


Subject(s)
Biodegradation, Environmental , Dioxygenases , Polycyclic Compounds/metabolism , Pseudomonas fluorescens/metabolism , Catechol 1,2-Dioxygenase , Enzyme Induction , Mass Spectrometry , Oxygenases/biosynthesis , Pseudomonas fluorescens/enzymology
10.
Prikl Biokhim Mikrobiol ; 25(6): 723-33, 1989.
Article in Russian | MEDLINE | ID: mdl-2698475

ABSTRACT

Biological methods of air purification are reviewed, which can be applied to deep air purification of complex multicomponent mixtures from harmful, toxic and odorous substances at room temperature and atmospheric pressure. Microbiological and technological aspects of the problem are discussed. Operation characteristics of biofilters, bioscrubbers and trickle bed bioreactors are compared. Prospects of air biopurification are considered.


Subject(s)
Air Pollutants/isolation & purification , Air Pollution/prevention & control , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...