Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ageing Res Rev ; 90: 102031, 2023 09.
Article in English | MEDLINE | ID: mdl-37567392

ABSTRACT

Telomere attrition is a proposed hallmark of aging. To evaluate the association of telomere length (TL) with chronological age across the human lifespan, we conducted a systematic review and meta-analysis of 414 study samples comprising 743,019 individuals aged 0-112 years. We examined both cross-sectional and longitudinal data, and evaluated the impact of various biological and methodological factors including sex, health status, tissue types, DNA extraction procedures, and TL measurement methods. The pooled corrected correlation between TL and age from cross-sectional samples was -0.19 (95%CI: -0.22 to -0.15), which weakened with increased chronological age (ß = 0.003, p < 0.001). Z-score change rates of TL across the lifespan showed a gradual decrease in shortening rate until around age 50 and remained at a relatively stable rate towards the elderly period. A greater attrition rate was observed in longitudinal than cross-sectional evaluations. For TL measured in base pairs, the median change rate of TL was -23 bp/year in cross-sectional samples and -38 bp/year in longitudinal samples. Methodological factors including TL measurement methods and tissue types impacted the TL-age correlation, while sex or disease status did not. This meta-analysis revealed the non-linear shortening trend of TL across the human lifespan and provides a reference value for future studies. Results also highlight the importance of methodological considerations when using TL as an aging biomarker.


Subject(s)
Longevity , Telomere Shortening , Aged , Humans , Cross-Sectional Studies , Aging/genetics , Telomere
2.
Toxicol Pathol ; 43(6): 825-37, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26085543

ABSTRACT

Glucokinase (GK) catalyzes the initial step in glycolysis and is a key regulator of glucose homeostasis. Therefore, glucokinase activators (GKa) have potential benefit in treating type 2 diabetes. Administration of a Bristol-Myers Squibb GKa (BMS-820132) to healthy euglycemic Sprague-Dawley (SD) rats and beagle dogs in 1 mo toxicology studies resulted in marked and extended hypoglycemia with associated clinical signs of toxicity and degenerative histopathological changes in the stomach, sciatic nerve, myocardium, and skeletal muscles at exposures comparable to those expected at therapeutic clinical exposures. To investigate whether these adverse effects were secondary to exaggerated pharmacology (prolonged hypoglycemia), BMS-820132 was administered daily to male Zucker diabetic fatty (ZDF) rats for 1 mo. ZDF rats are markedly hyperglycemic and insulin resistant. BMS-820132 did not induce hypoglycemia, clinical signs of hypoglycemia, or any of the histopathologic adverse effects observed in the 1 mo toxicology studies at exposures that exceeded those observed in SD rats and dogs. This indicates that the toxicity observed in euglycemic animals was secondary to the exaggerated pharmacology of potent GK activation. This study indicates that ZDF rats, with conventional toxicity studies, are a useful disease model for testing antidiabetic agents and determining toxicities that are independent of prolonged hypoglycemia.


Subject(s)
Diabetes Mellitus/genetics , Enzyme Activators/toxicity , Hypoglycemia/chemically induced , Hypoglycemic Agents/toxicity , Rats, Zucker/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus/pathology , Dogs , Eating/drug effects , Enzyme Activators/pharmacokinetics , Glucokinase/genetics , Hypoglycemia/pathology , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance/genetics , Male , Rats , Species Specificity , Toxicokinetics
3.
Regul Toxicol Pharmacol ; 73(1): 27-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26111605

ABSTRACT

This comparative study was conducted to assess background physiologic and pharmacologic parameters of cynomolgus macaques (Macaca fascicularis) from Cambodia, from a mixed Asian source (Cambodia, Vietnam and Indonesia), and from Mauritius. This evaluation provides a comprehensive assessment of several of these parameters in a single study. Ten male and 10 female captive-bred, age-matched macaques from each source were evaluated. Criteria for evaluation included weight gain, assessment of drug metabolizing enzyme activity, metabolomic analysis, immunologic assessments (lymphocyte subsets, TDAR, and serum Ig isotyping), clinical pathology evaluations, physical (respiratory, neurologic, cardiovascular, and ophthalmologic) examinations, pathogen screening, organ weights, and gross and microscopic pathology analyses. The results of this evaluation indicate that, compared to macaques of Asian origin, macaques from Mauritius had the lowest incidence and/or severity of spontaneous pathologic findings in several organs and tissues (lymphoid organs, stomach, kidney, urothelium, heart, arteries and lung) and better testicular maturity at a given age with minimal variability in organ weights. Although slight differences were observed in other parameters, none were considered detrimental to the use of macaques of Asian or Mauritius origin in pharmaceutical candidate safety studies with the use of a consistent source, concomitant controls, and appropriate background knowledge and screening.


Subject(s)
Macaca fascicularis/physiology , Organ Size/physiology , Animals , Asian People , Female , Humans , Male , Mauritius
4.
J Appl Toxicol ; 33(8): 820-7, 2013 Aug.
Article in English | MEDLINE | ID: mdl-22407988

ABSTRACT

Methyl-tertiary butyl ether (MTBE), a well known gasoline oxygenate, and US Food and Drug Administration approved gallstone treatment, has been previously shown to specifically target teleost embryonic angiogenesis. The studies reported here were to determine whether similar vascular disrupting effects occur in higher vertebrate models. Rat brain endothelial cells were isolated and allowed to form microcapillary-like tubes on Matrigel. MTBE (0.34-34.0 mm) exposure resulted in a dose-dependent reduction of tube formation, with the LOAEL at 0.34 mm, while MTBE's primary metabolite, tertiary butyl alcohol had no effect on tube formation. HUVECs, a primary cell line representing macrovascular cells, were able to form tubes on Matrigel in the presence of MTBE (1.25-80 mm), but the tubes were narrower than those formed in the absence of MTBE. In a mouse Matrigel plug implantation assay, 34.0 mm MTBE completely inhibited vessel invasion into plugs containing endothelial cell growth supplement (ECGS) compared with control plugs with ECGS alone. When timed-pregnant Fisher 344 rats were gavaged with MTBE (500-1500 mg kg(-1) ) from day 6 of organogenesis through 10 days post-parturition, no organ toxicity or histological changes in pup vasculature were observed. Results of the in vitro cell culture studies show that MTBE is anti-angiogenic at mm concentrations and has potential use as an anti-angiogenic treatment for solid tumors with minimal toxicity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Methyl Ethers/pharmacology , Administration, Oral , Animals , Brain/cytology , Cell Cycle/drug effects , Dose-Response Relationship, Drug , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mice , Mice, Inbred C57BL , Pregnancy , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , tert-Butyl Alcohol/pharmacology
5.
Toxicol Sci ; 129(2): 268-79, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22821849

ABSTRACT

Ibipinabant (IBI), a potent cannabinoid-1 receptor (CB1R) antagonist, previously in development for the treatment of obesity, causes skeletal and cardiac myopathy in beagle dogs. This toxicity was characterized by increases in muscle-derived enzyme activity in serum and microscopic striated muscle degeneration and accumulation of lipid droplets in myofibers. Additional changes in serum chemistry included decreases in glucose and increases in non-esterified fatty acids and cholesterol, and metabolic acidosis, consistent with disturbances in lipid and carbohydrate metabolism. No evidence of CB1R expression was detected in dog striated muscle as assessed by polymerase chain reaction, immunohistochemistry, Western blot analysis, and competitive radioligand binding. Investigative studies utilized metabonomic technology and demonstrated changes in several intermediates and metabolites of fatty acid metabolism including plasma acylcarnitines and urinary ethylmalonate, methylsuccinate, adipate, suberate, hexanoylglycine, sarcosine, dimethylglycine, isovalerylglycine, and 2-hydroxyglutarate. These results indicated that the toxic effect of IBI on striated muscle in beagle dogs is consistent with an inhibition of the mitochondrial flavin-containing enzymes including dimethyl glycine, sarcosine, isovaleryl-CoA, 2-hydroxyglutarate, and multiple acyl-CoA (short, medium, long, and very long chain) dehydrogenases. All of these enzymes converge at the level of electron transfer flavoprotein (ETF) and ETF oxidoreductase. Urinary ethylmalonate was shown to be a biomarker of IBI-induced striated muscle toxicity in dogs and could provide the ability to monitor potential IBI-induced toxic myopathy in humans. We propose that IBI-induced toxic myopathy in beagle dogs is not caused by direct antagonism of CB1R and could represent a model of ethylmalonic-adipic aciduria in humans.


Subject(s)
Adipates/urine , Malonates/urine , Muscle, Skeletal/drug effects , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Base Sequence , Blotting, Western , Carnitine/blood , DNA Primers , Dogs , Female , Gene Expression Profiling , Immunohistochemistry , Metabolomics , Polymerase Chain Reaction , Radioligand Assay , Receptor, Cannabinoid, CB1/genetics
6.
Toxicology ; 279(1-3): 73-84, 2011 Jan 11.
Article in English | MEDLINE | ID: mdl-20887764

ABSTRACT

Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al., 2008; Venkiteswaran et al., 2002; Villasante et al., 2007). Human umbilical vein endothelial cells (HUVECs) that were pre-formed into capillary-like tube networks in vitro were exposed to DEPs for 24h. After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. Since HUVEC tube networks are three-dimensional structures, whether particles entered the endothelial cells or tubular lumens was also examined. The data indicate that translocation of the particles does occur. The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions.


Subject(s)
Antigens, CD/drug effects , Cadherins/drug effects , Endothelium, Vascular/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Adherens Junctions/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Fluorescent Antibody Technique , Humans , Umbilical Veins
7.
Anal Chem ; 82(9): 3834-9, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20387806

ABSTRACT

Metabolomics with chromatography-mass spectrometry is often challenging and relies on statistical tools to discern changes in a metabolome. A pooled sample strategy was proposed, consisting of (1) identification of potential marker candidates by detecting changes of metabolites in a few pooled samples between treated and control groups and (2) validation of markers of statistically significant changes with a large set of individual samples. This strategy was enabled by applying a thorough background subtraction approach based on high-resolution mass spectrometry. In a proof-of-principle study, plasma samples were generated and pooled in a 6-week investigational study to identify potential toxicological markers for an observed muscle toxicity associated with the treatment of ibipinabant in dogs. With pooled control samples as backgrounds, potential marker candidates were revealed in the background-subtracted profiles of the pooled ibipinabant-treated samples. After further cleaning with the use of mass defect filtering to exclude drug metabolites and the comparison of profiles between pooled treated samples to eliminate inconsistent peaks, the major biomarker candidates in the profiles were identified to be 19 acylcarnitines. A total of 3 of the 19 acylcarnitines were measured on the set of individual samples to allow for statistical analysis. The results confirmed the significance of acylcarnitine elevations in ibipinabant-treated dogs and indicated that the acylcarnitines could be early markers for the dog-specific toxicity. The advantages of the pooled sample strategy and its potential limitations for metabolomics are discussed.


Subject(s)
Biomarkers/analysis , Cannabinoid Receptor Modulators/therapeutic use , Chromatography, High Pressure Liquid , Mass Spectrometry , Pyrazoles/toxicity , Pyrazoles/therapeutic use , Sulfonamides/toxicity , Sulfonamides/therapeutic use , Animals , Cannabinoid Receptor Modulators/adverse effects , Cannabinoid Receptor Modulators/toxicity , Chromatography, High Pressure Liquid/methods , Dog Diseases/drug therapy , Dogs , Humans , Obesity/drug therapy , Obesity/veterinary
8.
Toxicol Appl Pharmacol ; 223(3): 246-56, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17663016

ABSTRACT

We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR)alpha/gamma agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPARalpha, PPARdelta, PPARgamma, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPARgamma agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPARgamma agonism. Urothelial cell PPARalpha and gamma expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPARalpha, delta, or gamma mRNA or protein expression, PPARalpha- or gamma-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPARgamma-regulated gene expression. These results support the contention that urine acidification does not prevent PPARgamma agonist-induced bladder tumors by altering PPARalpha, gamma, or EGFR expression or PPAR signaling in rat bladder urothelium.


Subject(s)
Acids/urine , Diet , Epidermal Growth Factor/biosynthesis , Peroxisome Proliferator-Activated Receptors/biosynthesis , Urinary Bladder/metabolism , Urothelium/metabolism , Animals , Cell Proliferation , Immunohistochemistry , Male , Peroxisome Proliferator-Activated Receptors/agonists , Phosphorylation , Pioglitazone , Rats , Rats, Sprague-Dawley , Signal Transduction , Thiazolidinediones/pharmacology , Urinary Bladder/cytology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/prevention & control , Urothelium/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...