Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731646

ABSTRACT

Crystalline cerium(III) phosphate (CePO4), cerium(IV) phosphates, and nanocrystalline ceria are considered to be promising components of sunscreen cosmetics. This paper reports on a study in which, for the first time, a quantitative comparative analysis was performed of the UV-shielding properties of CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and CePO4/CeO2 composites. Both the sun protection factor and protection factor against UV-A radiation of the materials were determined. Ce(PO4)(HPO4)0.5(H2O)0.5 was shown to have a sun protection factor of 2.9, which is comparable with that of nanocrystalline ceria and three times higher than the sun protection factor of CePO4. Composites containing both cerium dioxide and CePO4 demonstrated higher sun protection factors (up to 1.8) than individual CePO4. When compared with the TiO2 Aeroxide P25 reference sample, cerium(III) and cerium(IV) phosphates demonstrated negligible photocatalytic activity. A cytotoxicity analysis performed using two mammalian cell lines, hMSc and NCTC L929, showed that CePO4, Ce(PO4)(HPO4)0.5(H2O)0.5, and nanocrystalline ceria were all non-toxic. The results of this comparative study indicate that cerium(IV) phosphate Ce(PO4)(HPO4)0.5(H2O)0.5 is more advantageous for use in sunscreens than either cerium(III) phosphate or CePO4/CeO2 composites, due to its improved UV-shielding properties and low photocatalytic activity.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38133066

ABSTRACT

Textiles and nonwovens (including those used in ventilation systems as filters) are currently one of the main sources of patient cross-infection. Healthcare-associated infections (HAIs) affect 5-10% of patients and stand as the tenth leading cause of death. Therefore, the development of new methods for creating functional nanostructured coatings with antibacterial and antiviral properties on the surfaces of textiles and nonwoven materials is crucial for modern medicine. Antimicrobial filter technology must be high-speed, low-energy and safe if its commercialization and mass adoption are to be successful. Cerium oxide nanoparticles can act as active components in these coatings due to their high antibacterial activity and low toxicity. This paper focuses on the elaboration of a high-throughput and resource-saving method for the deposition of cerium oxide nanoparticles onto nonwoven fibrous material for use in air-conditioning filters. The proposed spraying technique is based on the use of an aerodynamic emitter and simultaneous suction. Cerium oxide nanoparticles have successfully been deposited onto the filter materials used in air conditioning systems; the antibacterial activity of the ceria-modified filters exceeded 4.0.

3.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36940242

ABSTRACT

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Subject(s)
Cerium , Minerals , Minerals/chemistry , Adsorption
4.
Polymers (Basel) ; 15(6)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36987294

ABSTRACT

The present study proposes a novel application of humic substance-aminosilsesquioxane polyelectrolyte complexes (HS-ASQ) as dust suppressants. These complexes are synthesized through the reaction between humic substances (HS) and 3-aminopropyltriethoxysilane (APTES) in aqueous solution, resulting in the formation of active silanol groups that can bind to mineral surfaces and condense, forming gels. The HS-ASQ compositions were found to have a high sorption capacity for dust particles and could form coatings on their surface without cementing the dust, making them potentially useful for environmental applications. The viscosity of the HS-ASQ compositions can be controlled by adding carboxymethylcellulose (CMC), which also enhances their dust suppression abilities. Different compositions of HS-ASQ were synthesized by varying the proportions of APTES and CMC, and dust treated with these samples was assessed for its resistance to wind erosion using a laboratory-scale setup. Treatment with the HS-ASQ composition resulted in substantial reductions in PM10 and PM2.5 concentrations (particulate matter with aerodynamic diameters of 10 µm and 2.5 µm, respectively) of up to 77% and 85%, respectively, compared to the control.

5.
Molecules ; 27(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35956978

ABSTRACT

A method is proposed for the preparation of stable sols of nanocrystalline cerium dioxide in nonpolar solvents, based on surface modification of CeO2 nanoparticles obtained by thermal hydrolysis of concentrated aqueous solutions of ammonium cerium(IV) nitrate with residues of 2-ethylhexanoic and octanoic acids. The synthesis was carried out at temperatures below 100 °C and did not require the use of expensive and toxic reagents. An assessment of the radical-scavenging properties of the obtained sols using the superoxide anion-radical neutralization model revealed that they demonstrate notable antioxidant activity. The results obtained indicate the potential of the nanoscale cerium dioxide sols in nonpolar solvents to be used for creating nanobiomaterials possessing antioxidant properties.


Subject(s)
Cerium , Nanoparticles , Antioxidants/chemistry , Cerium/chemistry , Nanoparticles/chemistry , Solvents
6.
Nanomaterials (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36616077

ABSTRACT

Herein, we demonstrate the synthesis of sandwiched composite nanomagnets, which consist of hard magnetic Cr-substituted hexaferrite cores and magnetite outer layers. The hexaferrite plate-like nanoparticles, with average dimensions of 36.3 nm × 5.2 nm, were prepared via a glass crystallization method and were covered by spinel-type iron oxide via thermal decomposition of iron acetylacetonate in a hexadecane solution. The hexaferrite nanoplates act as seeds for the epitaxial growth of the magnetite, which results in uniform continuous outer layers on both sides. The thickness of the layers can be adjusted by controlling the concentration of metal ions. In this way, layers with an average thickness of 3.7 and 4.9 nm were obtained. Due to an atomically smooth interface, the magnetic composites demonstrate the exchange coupling effect, acting as single phases during remagnetization. The developed approach can be applied to any spinel-type material with matching lattice parameters and opens the way to expand the performance of hexaferrite nanomagnets due to a combination of various functional properties.

7.
Sensors (Basel) ; 21(21)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34770708

ABSTRACT

In semi-arid ecoregions of temperate zones, focused snowmelt water infiltration in topographic depressions is a key, but imperfectly understood, groundwater recharge mechanism. Routine monitoring is precluded by the abundance of depressions. We have used remote-sensing data to construct mass balances and estimate volumes of temporary ponds in the Tambov area of Russia. First, small water bodies were automatically recognized in each of a time series of high-resolution Planet Labs images taken in April and May 2021 by object-oriented supervised classification. A training set of water pixels defined in one of the latest images using a small unmanned aerial vehicle enabled high-confidence predictions of water pixels in the earlier images (Cohen's Κ = 0.99). A digital elevation model was used to estimate the ponds' water volumes, which decreased with time following a negative exponential equation. The power of the exponent did not systematically depend on the pond size. With adjustment for estimates of daily Penman evaporation, function-based interpolation of the water bodies' areas and volumes allowed calculation of daily infiltration into the depression beds. The infiltration was maximal (5-40 mm/day) at onset of spring and decreased with time during the study period. Use of the spatially variable infiltration rates improved steady-state shallow groundwater simulations.


Subject(s)
Depression , Groundwater , Ponds , Seasons , Water
8.
Nanomaterials (Basel) ; 11(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34685141

ABSTRACT

Flexible materials, such as fabric, paper and plastic, with nanoscale particles that possess antimicrobial properties have a significant potential for the use in the healthcare sector and many other areas. The development of new antimicrobial coating formulations is an urgent topic, as such materials could reduce the risk of infection in hospitals and everyday life. To select the optimal composition, a comprehensive analysis that takes into account all the advantages and disadvantages in each specific case must be performed. In this study, we obtained an antimicrobial textile with a 100% suppression of E. coli on its surface. These CeO2 nanocoatings exhibit low toxicity, are easy to manufacture and have a high level of antimicrobial properties even at very low CeO2 concentrations. High-power ultrasonic treatment was used to coat the surface of cotton fabric with CeO2 nanoparticles.

9.
ACS Omega ; 5(28): 17592-17600, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715244

ABSTRACT

Ceric hydrogen phosphate gels possess a very unique spatial organization, being nearly amorphous materials with a fibrous structure. Using a sol-gel approach, we succeeded in preparing bulky gels containing as much as 20,000 molecules of water per cerium atom. Supercritical treatment of these gels made it possible to obtain the first ultralight monolithic noncarbonaceous aerogels with a density as low as 1 mg/cm3.

10.
Molecules ; 25(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512896

ABSTRACT

New techniques were developed for the synthesis of monolithic highly porous composite aerogels (hydrogels) from reduced graphene oxide and carbon nanotubes, as well as graphene-containing composites based on mesoporous activated carbon. Simple operations for hydrophilization of synthesized samples were proposed. New electrode materials for electrosorption and deionization of water were fabricated. The resulting materials were investigated and tested in electrochemical cells for membrane capacitive deionization (MCDI).


Subject(s)
Carbon/chemistry , Electric Conductivity , Electrodes , Graphite/chemistry , Nanotubes, Carbon/chemistry , Water Purification/instrumentation , Water Purification/methods , Membranes, Artificial , Porosity
11.
Mater Sci Eng C Mater Biol Appl ; 108: 110494, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924007

ABSTRACT

Photochromic tungsten oxide (WO3) nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized to evaluate their potential for biomedical applications. PVP-stabilized tungsten oxide nanoparticles demonstrated a highly selective cytotoxic effect on normal and cancer cells in vitro. WO3 nanoparticles were found to induce substantial cell death in osteosarcoma cells (MNNG/HOS cell line) with a half-maximal inhibitory concentration (IC50) of 5 mg/mL, while producing no, or only minor, toxicity in healthy human mesenchymal stem cells (hMSc). WO3 nanoparticles induced intracellular oxidative stress, which led to apoptosis type cell death. The selective anti-cancer effects of WO3 nanoparticles are due to the pH sensitivity of tungsten oxide and its capability of reactive oxygen species (ROS) generation, which is expressed in the modulation of genes involved in reactive oxygen species metabolism, mitochondrial dysfunction, and apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Oxides/chemistry , Povidone/pharmacology , Tungsten/chemistry , Apoptosis/drug effects , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytoskeleton/metabolism , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Mesenchymal Stem Cells/drug effects , Microscopy, Electron, Transmission , Mitochondria/pathology , Nanoparticles/chemistry , Osteosarcoma/drug therapy , Oxidative Stress , Reactive Oxygen Species
12.
Materials (Basel) ; 12(9)2019 May 07.
Article in English | MEDLINE | ID: mdl-31067714

ABSTRACT

Due to their unique physical and chemical properties, monodisperse titanium oxide microspheres can be used in dye-sensitized solar cells, as cosmetic pigments, and for other applications. However, the synthesis of microspheres with narrow size distribution, desired phase composition, and porosity is still a challenge. In this work, spherical titania particles with controllable size, crystallinity, and pore size were obtained by Ti(OnBu)4 hydrolysis in ethanol. The influence of NaOH addition on the particles' size and morphology was investigated for the first time. Particle diameter can be tailored from 300 nm to 1.5 µm by changing water and NaOH concentrations. Particle size was analyzed by the statistical processing of scanning electron microscopy (SEM) images and differential centrifugal sedimentation (DCS) measurements. Optical properties of the microspheres were studied by diffuse reflectance UV-Vis spectroscopy. Thermal and hydrothermal treatment allowed transforming amorphous phase in as-prepared particles into nanocrystalline anatase and/or rutile. Transmission electron microscopy (TEM) study of the lamellae, cut out from spherical particles using focused ion beam (FIB), revealed that as-synthesized microspheres are non-hollow, homogeneous, and crystallize throughout the whole volume of the particle. The spherical particles possess photoprotective properties; the highest sun protection factor (SPF) was observed for amorphous microspheres.

13.
Molecules ; 25(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905983

ABSTRACT

Tungsten oxide-based bulk and nanocrystalline materials are widely used as photocatalytic and photo- and electrochromic materials, as well as materials for biomedical applications. In our work, we focused our attention on the effect of sodium cations on the structure and photochromic properties of the WO3@PVP aqueous sols. To establish the effect, the sols were synthesized by either simple pH adjusting of sodium or ammonium tungstates' solutions, or using an ion exchange technique to remove the cations from the materials to the greatest possible extent. We showed that the presence of sodium cations in WO3@PVP favors the formation of reduced tungsten species (W+5) upon UV irradiation of the materials, strongly affecting their photochromic and photocatalytic properties. The pronounced photoreductive properties of WO3@PVP sols in photocatalytic reactions were demonstrated. Due to photoreductive properties, photochromic sols of tungsten oxide can act as effective photoprotectors in photooxidation processes. We believe that our work provides a considerable contribution to the elucidation of photochromic and redox phenomena in WO3-based materials.


Subject(s)
Nanoparticles/chemistry , Oxides/chemistry , Povidone/chemistry , Sodium/chemistry , Tungsten/chemistry , Catalysis , Cations , Hydrogen-Ion Concentration , Molecular Structure , Particle Size , Photochemical Processes , Scattering, Small Angle , Ultraviolet Rays , X-Ray Diffraction
14.
Chemistry ; 24(71): 18952-18962, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30238511

ABSTRACT

Composites of WS2 nanotubes (NT-WS2 ) and gold nanoparticles (AuNPs) were prepared using aqueous HAuCl4 solutions and subjected to surface analysis. The obtained materials were jointly characterized by X-ray photoelectron (XPS), Raman scattering (RSS), and ultraviolet photoelectron (UPS) spectroscopies. Optical extinction spectroscopy and electron energy loss spectroscopy in the scanning transmission electron microscopy regime (STEM-EELS) were also employed to study plasmon features of the nanocomposite. It was found that AuNPs deposition is accompanied by a partial oxidative dissolution of WS2 , whereas Au-S interfacial species could be responsible for the tight contact of metal nanoparticles and the disulfide. A remarkable sensitivity of n-type resistance of NT-WS2 and Au-NT-WS2 to the adsorption of NO2 gas was also demonstrated at room temperature using periodical illumination by a 530 nm light-emitting diode. Au-NT-WS2 nanocomposites are found to possess a higher photoresponse and enhanced sensitivity in the 0.25-2.0 ppm range of NO2 concentration, as compared to the pristine NT-WS2 . This behaviour is discussed within the physisorption-charge transfer model to explore sensing properties of the nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...