Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Chem Phys Lipids ; 135(1): 69-82, 2005 May.
Article in English | MEDLINE | ID: mdl-15854626

ABSTRACT

Most of the studies on the solubilization of model membranes by Triton X-100 (TR) involve one lipid. The aim of the present study was to evaluate the effect of the addition of cholesterol on the solubilization of bilayers made of palmitoyloleoylphosphatidylcholine (POPC) or dipalmitoylphosphatidylcholine (DPPC). Detailed investigation of the kinetics of solubilization of the cholesterol-containing bilayers by TR at different temperatures reveals that: (i) At 4 degrees C, solubilization of both systems is relatively slow. Hence, in order to prevent misleading conclusions from turbidity measurements it is important to monitor the solubilization after steady-state values of optical density (OD) are reached. (ii) Studies of the temperature-induced changes of the aggregates present in mixtures of TR, POPC and cholesterol indicate that the state of aggregation at all temperatures (including 4 degrees C) represents equilibrium. By contrast, for DPPC/cholesterol/TR mixtures "kinetic traps" may occur not only at 4 degrees C but at higher temperatures as well (e.g. 37 degrees C). (iii) The presence of cholesterol in POPC bilayers makes the bilayers more resistant to solubilization at low temperatures, especially at 4 degrees C. As a consequence, the temperature dependence of the TR concentration required for complete solubilization (Dt(sol)) is no longer a monotonically increasing function (as for POPC bilayers) but a bell-shaped function, with a minimum at about 25 degrees C. Inclusion of cholesterol in DPPC bilayers makes the bilayers more resistant to solubilization at all temperatures except 4 degrees C. In this system, we observe a bell-shaped dependence of Dt(sol) on temperature, with a minimum at 37 degrees C. (iv) Both the rate of vesicle size growth and the rate of the solubilization of POPC vesicles are not affected by the inclusion of cholesterol in the bilayers. Similarly, cholesterol did not affect significantly the rate of size growth of DPPC bilayers at all temperatures, but reduced the rate of solubilization at 4 degrees C.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Membrane Fluidity , Octoxynol/chemistry , Phosphatidylcholines/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analysis , Ions , Lipid Bilayers/analysis , Liposomes/analysis , Octoxynol/analysis , Particle Size , Phase Transition , Phosphatidylcholines/analysis , Solubility , Surface-Active Agents/analysis , Surface-Active Agents/chemistry , Temperature
2.
Eur Phys J E Soft Matter ; 14(3): 299-308, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15338441

ABSTRACT

In addition to the familiar bending and stretching deformations, lipid monolayers and bilayers in their disordered state are often subjected to tilt deformations, occurring for instance in structural rearrangements accompanying membrane fusion, or upon insertion of "oblique" hydrophobic proteins into lipid bilayers. We study the elastic response of a flat lipid monolayer to a tilt deformation, using the spatial and conformational average of the chain end-to-end vector from the membrane normal to define a macroscopic membrane tilt. The physical origin and magnitude of the corresponding tilt modulus kappat is analyzed using two complementary theoretical approaches. The first is a phenomenological model showing that the tilt and bending deformations are decoupled and the effects of inter-chain correlations on the tilt modulus is small. The second is based on a molecular-level mean-field theory of chain packing, enabling numerical evaluation of the tilt modulus for realistic, multi-conformation, chain models. Both approaches reveal that the tilt modulus involves two major contributions. The first is elastic in origin, arising from the stretching of the hydrocarbon chains upon a tilt deformation and reflecting the loss of chain conformational freedom associated with chain stretching. The second, purely entropic, contribution results from the constraints imposed by a tilt deformation on the fluctuations of chain director orientations. Using the chain-packing theory we compute the two contributions numerically as a function of the cross-sectional area per chain. The elastic and entropic terms are shown to dominate the value of kappat for small and large areas per chain, respectively. For typical cross-sectional areas of lipid chains in biological membranes they are of comparable magnitude, yielding kappat approximately 0.2kBT/A2.


Subject(s)
Membrane Fluidity , Membrane Lipids/chemistry , Membranes, Artificial , Models, Chemical , Models, Molecular , Computer Simulation , Elasticity , Lipid Bilayers/chemistry , Macromolecular Substances , Membrane Fusion , Molecular Conformation
3.
Biophys J ; 87(1): 366-74, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15240471

ABSTRACT

The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.


Subject(s)
Membrane Fusion , Models, Theoretical , Phase Transition , Phosphatidylethanolamines/chemistry , Phospholipids/chemistry , Algorithms , Temperature
4.
Chem Phys Lipids ; 126(1): 55-76, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14580711

ABSTRACT

Most of the studies on the solubilization of model membranes conducted thus far involved model membranes made of liquid-crystalline phospholipids. Relatively little is known on the influence of temperature and of the phase of the lipid bilayers on their solubilization by detergents. The aim of the present study was to gain knowledge about the temperature and phase dependence of the solubilization of phospholipid bilayers by the non-ionic detergent Triton X-100 (TR). Detailed investigation of the kinetics of the solubilization of dipalmitoylphosphatidylcholine (DPPC), as well as of palmitoyloleoylphosphatidylcholine (POPC) by TR at different temperatures reveals that: (i) solubilization of DPPC is a relatively slow process, especially below Tm. This means that in order to prevent misleading conclusions it is important to monitor the solubilization after a steady state is established. (ii) Both the steady state structure and size of DPPC/TR aggregates and the kinetics of solubilization depend on temperature. (iii) The TR concentration required for solubilization of POPC bilayers is an increasing function of temperature, although no phase change of bilayers occurs in the studied temperature range. (iv) Detailed studies of the temperature-induced changes of the aggregates present in DPPC/TR or POPC/TR mixtures suggest that the state of aggregation at any temperature above 23 degrees C represents equilibrium. By contrast, for DPPC/TR mixtures at 4 degrees C all the processes are very slow, which complicates the interpretation of results obtained through the common practice of studying "rafts" by investigating detergent-resistant membranes.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Octoxynol/pharmacology , Kinetics , Membrane Microdomains , Membranes, Artificial , Particle Size , Phase Transition/drug effects , Phosphatidylcholines/chemistry , Solubility/drug effects , Temperature
5.
Traffic ; 2(1): 51-65, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11208168

ABSTRACT

Membrane budding and fission are the key stages of ubiquitous processes of formation of intracellular transport vesicles. We present a theoretical consideration of one of the most important types of fission machinery, which is mediated by GTPase dynamin and controlled by lipid composition of the membrane. We suggest a mechanism for collapse of a membrane neck driven by interplay between the dynamin collar and the bending elastic energy of the neck membrane. The collar plays a role of a rigid external skeleton, which imposes mechanical constraints on the neck. We show that in certain conditions the membrane of the neck loses its stability and collapses. Collapse can result from: (i) shifting of the spontaneous curvature of the neck membrane towards negative values, (ii) stretching of the dynamin collar, (iii) tightening of the dynamin collar. The three factors can act separately or concertedly. The suggested model accounts for the major experimental knowledge on membrane fission mediated by dynamin. It includes the elements of all previous models of dynamin action based on different sets of experimental results [Sever et al., Traffic 2000; 1: 385-392]. It reconciles, at least partially, the apparent contradictions between the existing alternative views on biomembrane fission machinery.


Subject(s)
Cell Membrane/physiology , GTP Phosphohydrolases/metabolism , Lipid Metabolism , Models, Biological , Cell Membrane/chemistry , Cell Surface Extensions/metabolism , Dynamin III , Dynamins , GTP Phosphohydrolases/chemistry , Mathematics , Protein Structure, Tertiary
6.
Biochim Biophys Acta ; 1508(1-2): 1-19, 2000 Nov 23.
Article in English | MEDLINE | ID: mdl-11090815

ABSTRACT

The phase behavior of mixtures of phospholipids and detergents in aqueous solutions is an issue of basic importance for understanding the solubilization and reconstitution of biological membranes. We review the existing knowledge on the compositionally induced reversible transformation of phospholipid bilayers into lipid-detergent mixed micelles. First, we describe the experimental protocols used for preparation of such mixtures and emphasize the scope and limitations of the various techniques used for evaluation of the microstructures of the self-assembled amphiphiles in the mixture. Subsequently, we interpret the existing data in terms of the spontaneous curvature of the amphiphiles and the finite size of the mixed micelles. These considerations lead to a general description of the phase behavior, which forms the basis for a rational approach to solubilization and reconstitution experiments.


Subject(s)
Membranes/chemistry , Surface-Active Agents/chemistry , Detergents/chemistry , Membranes, Artificial , Micelles , Phospholipids/chemistry , Solubility , Thermodynamics
7.
Biophys J ; 79(3): 1415-27, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10969003

ABSTRACT

Two subunits of influenza hemagglutinin (HA), HA1 and HA2, represent one of the best-characterized membrane fusion machines. While a low pH conformation of HA2 mediates the actual fusion, HA1 establishes a specific connection between the viral and cell membranes via binding to the sialic acid-containing receptors. Here we propose that HA1 may also be involved in modulating the kinetics of HA refolding. We hypothesized that binding of the HA1 subunit to its receptor restricts the major refolding of the low pH-activated HA to a fusion-competent conformation and, in the absence of fusion, to an HA-inactivated state. Dissociation of the HA1-receptor connection was considered to be a slow kinetic step. To verify this hypothesis, we first analyzed a simple kinetic scheme accounting for the stages of dissociation of the HA1/receptor bonds, inactivation and fusion, and formulated experimentally testable predictions. Second, we verified these predictions by measuring the extent of fusion between HA-expressing cells and red blood cells. Three experimental approaches based on 1) the temporal inhibition of fusion by lysophosphatidylcholine, 2) rapid dissociation of the HA1-receptor connections by neuraminidase treatment, and 3) substitution of membrane-anchored receptors by a water-soluble sialyllactose all provided support for the proposed role of the release of HA1-receptor connections. Possible biological implications of this stage in HA refolding and membrane fusion are being discussed.


Subject(s)
Erythrocyte Membrane/physiology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/physiology , Membrane Fusion/physiology , Animals , CHO Cells , Cricetinae , Erythrocyte Membrane/virology , Humans , Hydrogen-Ion Concentration , Kinetics , Membrane Fusion/drug effects , Models, Theoretical , Orthomyxoviridae/physiology , Phosphatidylcholines/pharmacology , Protein Conformation , Protein Folding
8.
Biophys J ; 77(1): 604-16, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10388785

ABSTRACT

Dynamin is a GTPase playing an essential role in ubiquitous intra cellular processes involving separation of vesicles from plasma membranes and membranes of cellular compartments. Recent experimental progress (. Cell. 93:1021-1029;. Cell. 94:131-141) has made it possible to attempt to understand the action of dynamin in physical terms. Dynamin molecules are shown to bind to a lipid membrane, to self-assemble into a helicoidal structure constricting the membrane into a tubule, and, as a result of GTP hydrolysis, to mediate fission of this tubule (). In a similar way, dynamin is supposed to mediate fission of a neck connecting an endocytic bud and the plasma membrane, i.e., to complete endocytosis. We suggest a mechanism of this "pinchase" action of dynamin. We propose that, as a result of GTP hydrolysis, dynamin undergoes a conformational change manifested in growth of the pitch of the dynamin helix. We show that this gives rise to a dramatic change of shape of the tubular membrane constricted inside the helix, resulting in a local tightening of the tubule, which is supposed to promote its fission. We treat this model in terms of competing elasticities of the dynamin helix and the tubular membrane and discuss the predictions of the model in relation to the previous views on the mechanism of dynamin action.


Subject(s)
GTP Phosphohydrolases/chemistry , Cell Membrane/chemistry , Dynamins , Elasticity , Endocytosis , Guanosine Triphosphate/metabolism , Lipid Bilayers/chemistry , Models, Molecular , Models, Theoretical , Protein Conformation , Protein Structure, Secondary
9.
Mol Membr Biol ; 16(1): 33-42, 1999.
Article in English | MEDLINE | ID: mdl-10332735

ABSTRACT

Fusion pore formation in the haemagglutinin (HA)-mediated fusion is a culmination of a multistep process, which involves low-pH triggered refolding of HA and rearrangement of membrane lipid bilayers. This rearrangement was arrested or slowed down by either altering lipid composition of the membranes, or lowering the density of HA, and/or temperature. The results suggest that fusion starts with the lateral assembly of activated HA into multimeric complexes surrounding future fusion sites. The next fusion stage involves hemifusion, i.e. merger of only contacting membrane monolayers. Lysophosphatidylcholine reversibly arrests fusion prior to this hemifusion stage. In the normal fusion pathway, hemifusion is transient and is not accompanied by any measurable transfer of lipid probes between the membranes. A temperature of 4 degrees C stabilizes this 'restricted hemifusion' intermediate. The restriction of lipid flow through the restricted hemifusion site is HA-dependent and can be released by partial cleaving of low pH-forms of HA with mild proteinase K treatment. Lipid effects indicate that fusion proceeds through two different lipid-involving intermediates, which are characterized by two opposite curvatures of the lipid monolayer. Hemifusion involves formation of a stalk, a local bent connection between the outer membrane monolayers. Fusion pore formation apparently involves bending of the inner membrane monolayers, which come together in hemifusion. To couple low pH-induced refolding of HA with lipid rearrangements, it is proposed that the extension of the alpha-helical coiled coil of HA pulls fusion peptides inserted into the HA-expressing membrane and locally bends the membrane into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements into a ring-like complex and causes the bulging of the host membrane into a dimple growing towards the target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion.


Subject(s)
Hemagglutinins, Viral/chemistry , Orthomyxoviridae/chemistry , Viral Fusion Proteins/chemistry , Endopeptidase K/pharmacology , Lysophosphatidylcholines/pharmacology , Membrane Lipids/physiology , Models, Biological , Protein Folding , Time Factors
10.
Biophys J ; 75(3): 1384-96, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9726939

ABSTRACT

Although membrane fusion mediated by influenza virus hemagglutinin (HA) is the best characterized example of ubiquitous protein-mediated fusion, it is still not known how the low-pH-induced refolding of HA trimers causes fusion. This refolding involves 1) repositioning of the hydrophobic N-terminal sequence of the HA2 subunit of HA ("fusion peptide"), and 2) the recruitment of additional residues to the alpha-helical coiled coil of a rigid central rod of the trimer. We propose here a mechanism by which these conformational changes can cause local bending of the viral membrane, priming it for fusion. In this model fusion is triggered by incorporation of fusion peptides into viral membrane. Refolding of a central rod exerts forces that pull the fusion peptides, tending to bend the membrane around HA trimer into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements in the plane of the membrane into a ring-like cluster. Bulging of the viral membrane within such cluster yields a dimple growing toward the bound target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion. We analyze the energetics of this proposed sequence of membrane rearrangements, and demonstrate that this simple mechanism may explain some of the known phenomenological features of fusion.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Membrane Fusion/physiology , Membrane Lipids/chemistry , Biophysical Phenomena , Biophysics , Elasticity , Hydrogen-Ion Concentration , Models, Biological , Protein Conformation , Protein Folding , Thermodynamics , Viral Fusion Proteins/chemistry
11.
Biophys J ; 73(3): 1448-57, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9284312

ABSTRACT

Stepwise dilution of lipid-surfactant mixed micelles first results in extraction of surfactant from the mixed micelles into the aqueous medium. Subsequently mixed micelles transform into vesicles, within a range of compositions that corresponds to equilibrium coexistence between these two types of aggregates. Further dilution results in extraction of surfactant from the resultant mixed vesicles. In the present study, we have investigated the heat evolution of these processes, as they occur in mixed systems composed of egg phosphatidylcholine (PC) and the nonionic surfactant octylglucoside (OG). A combined use of isothermal titration calorimetry (ITC) and photon correlation spectroscopy (PCS), capable of monitoring phase transformations, revealed that 1) The sum of all of the studied processes (i.e., extraction of OG from mixed micelles and vesicles and the phase transformation) is isocaloric at approximately 40 degrees C throughout the whole dilution. At lower temperatures, all of the dilution steps are exothermic, whereas at higher temperatures all of them are endothermic. 2) At all temperatures, the absolute value of the heat associated with each dilution step within the range of coexistence of micelles and vesicles is almost constant and larger than in either the micellar or the vesicular range. We give an interpretation of these calorimetric data in terms of the relationship between the composition of the mixed aggregates Re and the aqueous concentration of surfactant monomers Dw. Assuming that the main contribution to the heat evolution is due to extraction of surfactant from mixed aggregates to the aqueous solution, we deduce the relationship Dw(Re) characterizing the system over the whole range of compositions. We find that, in accord with thermodynamic expectations, Dw is almost constant throughout the range of coexistence of mixed micelles and vesicles.


Subject(s)
Glucosides/chemistry , Models, Chemical , Phosphatidylcholines/chemistry , Surface-Active Agents/chemistry , Absorptiometry, Photon/methods , Calorimetry/methods , Kinetics , Micelles , Reproducibility of Results , Thermodynamics , Water
12.
Biophys J ; 73(3): 1458-67, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9284313

ABSTRACT

We study the heat associated with the transformation of vesicles into micelles in mixtures of bilayer-forming phospholipids and micelle-forming surfactants. We subdivide the total heat evolution deltaQ(coex) within the range of coexistence of vesicles and micelles into three contributions related to the transition of dN(D)m-b molecules of surfactant and dN(L)m-b molecules of lipid from micelles to vesicles and to the extraction of dN(D)m-w molecules of surfactant from micelles to the aqueous solution, so that deltaQ(coex) = deltaH(D)m-w x dN(D)m-w + deltaH(D)m-b x dN(D)m-b + deltaH(L)m-b x dN(L)m-b where deltaH(D)m-w, deltaH(L)m-b, and deltaH(D)m-b are the respective molar "transfer" enthalpies. We design a method for the evaluation of all three molar enthalpies, from isothermal calorimetric titrations conducted according to two different protocols of titration of lipid-surfactant mixtures. In the first protocol the mixture is titrated with an aqueous solution of pure lipid vesicles, and in the second the mixture is titrated with an aqueous solution of pure surfactant. Titration of the mixed systems by a buffer solution serves to verify the results obtained under these protocols. In addition to the values of molar enthalpies, our method yields the cmc value of the pure surfactant. We apply our method to investigating the heat evolution in mixtures of egg yolk phosphatidylcholine and the nonionic surfactant octylglucoside in a phosphate-buffered saline solution at 28 degrees C. These studies gave the following values: deltaH(D)m-w = -1732 cal/mol, deltaH(L)m-b = -592 cal/mol, deltaH(D)m-b = 645 cal/mol, and cmc = 23.5 mM. We discuss the possible physical insight of these values and the perspectives of applications of the proposed method.


Subject(s)
Lipid Bilayers/chemistry , Micelles , Models, Chemical , Phosphatidylcholines/chemistry , Surface-Active Agents/chemistry , Calorimetry/methods , Thermodynamics
13.
Biophys J ; 71(5): 2623-32, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8913600

ABSTRACT

Diacylglycerol, a biological membrane second messenger, is a strong perturber of phospholipid planar bilayers. It converts multibilayers to the reverse hexagonal phase (HII), composed of highly curved monolayers. We have used x-ray diffraction and osmotic stress of the HII phase to measure structural dimensions, spontaneous curvature, and bending moduli of dioleoylphosphatidylethanolamine (DOPE) monolayers doped with increasing amounts of dioleoylglycerol (DOG). The diameter of the HII phase cylinders equilibrated in excess water decreases significantly with increasing DOG content. Remarkably, however, all structural dimensions at any specific water/lipid ratio that is less than full hydration are insensitive to DOG. By plotting structural parameters of the HII phase with changing water content in a newly defined coordinate system, we show that the elastic deformation of the lipid monolayers can be described as bending around a pivotal plane of constant area. This dividing surface includes 30% of the lipid volume independent of the DOG content (polar heads and a small fraction of hydrocarbon chains). As the mole fraction of DOG increases to 0.3, the radius of spontaneous curvature defined for the pivotal surface decreases from 29 A to 19 A, and the bending modulus increases from approximately 11 to 14 (+/-0.5) kT. We derive the conversion factors and estimate the spontaneous curvatures and bending moduli for the neutral surface which, unlike the pivotal plane parameters, are intrinsic properties that apply to other deformations and geometries. The spontaneous curvature of the neutral surface differs from that of the pivotal plane by less than 10%, but the difference in the bending moduli is up to 40%. Our estimate shows that the neutral surface bending modulus is approximately 9kT and practically does not depend on the DOG content.


Subject(s)
Diglycerides/chemistry , Membrane Lipids/chemistry , Phosphatidylethanolamines/chemistry , Elasticity , Membranes, Artificial , Water/chemistry , X-Ray Diffraction
15.
Biophys J ; 67(4): 1603-11, 1994 Oct.
Article in English | MEDLINE | ID: mdl-7819492

ABSTRACT

We have accounted for the unusual structural change wherein dioleoylphosphatidylethanolamine undergoes a hexagonal-lamellar-hexagonal transition sequence as the water content is reduced systematically. We describe the role played by the energies of bending, hydration, voids in hexagonal interstices, and van der Waals interaction in this transition sequence. We have used the X-ray diffraction and osmotic stress experiments on the two phases to derive the structural parameters and all of the force constants defining the energetics of the hexagonal and lamellar phases. We have calculated the chemical potentials of lipid and water in both phases and derived the phase diagram of the lipid with no free, adjustable parameters. The calculated temperature/osmotic stress and temperature/composition diagrams quantitatively agree with experiment. The reentrant transition appears to be driven by a delicate balance between the hydration energy in the lamellar phase and bending energy in the hexagonal phase, whereas the energy of voids in hexagonal interstices defines its energy scale and temperature range. Van der Waals attraction between the bilayers in the lamellar phase does not appear to be important in this transition.


Subject(s)
Phosphatidylethanolamines/chemistry , Mathematics , Models, Molecular , Models, Theoretical , Molecular Conformation , Osmolar Concentration , Thermodynamics
16.
Eur Biophys J ; 21(1): 35-45, 1992.
Article in English | MEDLINE | ID: mdl-1516559

ABSTRACT

This work gives a thermodynamic analysis of outgrowth extraction from the cell body by a pulling force. The results are applied for a case when the pulling force is generated by an external high-frequency electric field. Two equilibrium conditions are analyzed: internal equilibrium of an outgrowth and equilibrium between the outgrowth and the cell body. In both cases the stability of feasible equilibrium states was studied. The work shows that the curvature of an outgrowth equilibrated with a pulling electric force depends on the squared amplitude of the electric field E0(2), on the outgrowth length l and on the transmembrane pressure differential delta P, and that at a sufficiently large transmembrane pressure differential the cylindrical form of the outgrowth loses its stability. Long outgrowths are more stable than short ones. The minimal value of critical pressure differential was estimated. The work also shows that outgrowth extraction from the cell body requires that the applied force exceeds a critical value below which no outgrowth is formed. The value of the electric field at which outgrowth formation is feasible was estimated.


Subject(s)
Cell Physiological Phenomena , Biomechanical Phenomena , Biophysical Phenomena , Biophysics , Cell Membrane/physiology , Cells/ultrastructure , Electricity , Models, Biological , Pressure , Thermodynamics
17.
Eur Biophys J ; 19(6): 301-9, 1991.
Article in English | MEDLINE | ID: mdl-1915155

ABSTRACT

The time dependence of small elastic extensional RBC deformation by micropipette aspiration has been analyzed. This process shows two-phases which are characterized by time constants of the order of some tenths of seconds and about ten seconds, respectively. The equilibrium tongue length is reached after about 30 s. For the first, fast step we assume that the membrane model of immobilized boundaries holds, i.e., the skeleton is tightly associated with the lipid bilayer and no redistribution of the skeleton with respect to the lipid bilayer is allowed. This lipid-spectrin interaction or anchorage is characterized by some association force density. It has been shown that at a given tongue length the force generated owing to the membrane deformation and acting to redistribute the spectrin, overcomes (in some membrane area) the association force density and results in an additional increase of the sucked membrane length. Equations have been derived to describe this process. From the experimental conditions of an RBC aspiration and the determined tongue length corresponding to the second slow aspiration step, the association force density between the lipid bilayer and the spectrin network may be determined. From literature data and our own results a force density of between 40 and 50 Pa has been estimated.


Subject(s)
Erythrocyte Deformability/physiology , Cytological Techniques , Cytoskeleton/chemistry , Elasticity , Erythrocyte Membrane/physiology , Humans , In Vitro Techniques , Time Factors , Viscosity
18.
J Theor Biol ; 144(3): 347-65, 1990 Jun 07.
Article in English | MEDLINE | ID: mdl-2395376

ABSTRACT

The process of rupture and redistribution of the red cell membrane skeleton is analyzed theoretically. Following the emergence of the rupture the spectrin-actin network is redistributed on the cytoplasmic surface of the membrane bilayer. Due to the interaction of the membrane skeleton and integral proteins the redistribution of the spectrin-actin network leads to the release of purely lipid regions of the membrane. The scale of the protein redistribution caused by the rupture of the membrane skeleton and the size of the lipid domains produced depend on the shape of the membrane and the value of the electrical interaction of the membrane proteins. The lipid domains occurring as a result of the rupture and relaxation of the spectrinactin network can spontaneously increase or decrease its area. The criteria determining the conditions which result in the system's evolutions leading to the domain growth have been obtained. The character of the evolution is determined by the shape of the membrane region in which the rupture occurs as well as the relation between the effective linear tension of the rupture boundary and the modulus of elasticity of the spectrin-actin network.


Subject(s)
Cytoskeleton/physiology , Erythrocyte Membrane/physiology , Lipids/physiology , Animals , Models, Biological
19.
Eur Biophys J ; 17(3): 121-9, 1989.
Article in English | MEDLINE | ID: mdl-2792021

ABSTRACT

A mechanism for rupture of a separating bilayer, resulting from vesicle monolayer fusion is investigated theoretically. The stalk mechanism of monolayer fusion, assuming the formation and expansion of a stalk between two interacting membranes is considered. The stalk evolution leads to formation of a separating bilayer and mechanical tension appearance in the system. This tension results in rupture of the separating bilayer and hydrophilic pore formation. Competition between the mechanical tension and hydrophilic pore energy defines the criteria of contacting bilayer rupture. The tension increases with an increase of the absolute value of the negative spontaneous curvature of the outer membrane monolayer, Kos. The pore edge energy decreases with an increase of the positive spontaneous curvature of the inner membrane monolayer, Kis. The relations of spontaneous curvatures of outer and inner monolayers, leading to separating bilayer rupture, is calculated. It is demonstrated that his process is possible, provided spontaneous curvatures of membrane monolayers have opposite signs: Kos less than O, Kis greater than O. Experimental data concerning the fusion process are analysed.


Subject(s)
Lipid Bilayers , Models, Structural , Elasticity , Mathematics , Stress, Mechanical , Water
20.
J Theor Biol ; 133(2): 147-67, 1988 Jul 21.
Article in English | MEDLINE | ID: mdl-3236891

ABSTRACT

The mechanical properties of erythrocyte membrane composed of a membrane bilayer and membrane skeleton are considered. Two membrane models are described: the model of free boundaries (MFB) and the model of immobilized boundaries (MIB). In MFB, the skeleton is assumed to be attached to the bilayer at a finite number of points, whereas MIB allows the interaction of each spectrin filament with the bilayer along its whole length. For MFB an estimate was made of the mechanical strain generated in the membrane by sucking erythrocytes into a micropipette. The existence of the deformation threshold is demonstrated, below which no mechanical strain, except that of bending, appears in the membrane. Thus only deformations exceeding this threshold result in strain. The relationship between the applied tension and the height of erythrocyte "tongue" sucked into a micropipette was determined. The MIB characteristics correspond to the model of Evans: strains in the membrane are generated at any deformation, however small, i.e. the threshold is equal to zero. A basic feature of this model is quite a different distribution of the skeleton deformations in the membrane. A comparison of the theoretical models and experimental data demonstrated the possibility of either MFB or MIB occurring, depending on the characteristic measurement time.


Subject(s)
Erythrocyte Deformability , Erythrocyte Membrane/physiology , Humans , Mathematics , Models, Biological , Stress, Mechanical , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...