Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 308: 120649, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813341

ABSTRACT

Heparin, a major anticoagulant drug, comprises a complex mixture of motifs. Heparin is isolated from natural sources while being subjected to a variety of conditions but the detailed effects of these on heparin structure have not been studied in depth. Therefore, the result of exposing heparin to a range of buffered environments, ranging pH values from 7 to 12, and temperatures of 40, 60 and 80 °C were examined. There was no evidence of significant N-desulfation or 6-O-desulfation in glucosamine residues, nor of chain scission, however, stereochemical re-arrangement of α-L-iduronate 2-O-sulfate to α-L-galacturonate residues occurred in 0.1 M phosphate buffer at pH 12/80 °C. The results confirm the relative stability of heparin in environments like those during extraction and purification processes; on the other hand, the sensitivity of heparin to pH 12 in buffered solution at high temperature is highlighted, providing an important insight for heparin manufacturers.


Subject(s)
Heparin , Sulfates , Heparin/chemistry , Iduronic Acid , Phosphates
2.
Carbohydr Polym ; 294: 119771, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868750

ABSTRACT

Upon the search for a suitable processing method for cellulose, the dissolution in NaOH(aq) presents a real green potential, including its ability to sorb environmental CO2(g) affecting dissolution. Here, CO2(g) was delivered in a controlled way to the cellulose/NaOH(aq) system during the in-situ analysis with FTIR, pH and temperature meters, resulting in efficient coagulation of cellulose. Surprisingly, the coagulation occurred with a minimal loss of alkalinity. This was considered an effect of a specific interaction between the dissolved polymer and gas, resulting in the introduction of carbonate species, highly influential in the coagulation process. The process repeated at 25 °C and 5 °C suggested a strong influence of temperature. The conversion routes of the CO2(g) coagulant were also related to the dissolved state of the polymer. The recovered cellulose appeared competitive with EtOH recovery in terms of structure. The presented finding put a perspective on the utilisation of both the coagulation process and final materials in cellulose technology.


Subject(s)
Carbon Dioxide , Cellulose , Cellulose/chemistry , Sodium Hydroxide/chemistry , Technology , Temperature
3.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500644

ABSTRACT

The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible. Here, the current knowledge concerning the chemical modification of GAGs, one of the principal approaches for the study of the structure-function relationships in these molecules, is reviewed. Some additional methods that were applied successfully to the analysis and/or processing of other carbohydrates, but which could be suitable in GAG chemistry, are also discussed.


Subject(s)
Glycosaminoglycans/chemistry , Polysaccharides/chemistry , Animals , Anticoagulants/chemistry , Heparin/chemistry , Humans , Structure-Activity Relationship
4.
ACS Appl Mater Interfaces ; 13(4): 5551-5563, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33471995

ABSTRACT

Heparin is a complex glycosaminoglycan, derived mainly from pig mucosa, used therapeutically for its anticoagulant activity. Yet, owing largely to the chain complexity, the progressive effects of environmental conditions on heparin structure have not been fully described. A systematic study of the influence of acidic hydrolysis on heparin chain length and substitution has therefore been conducted. Changes in the sulfation pattern, monitored via 2D NMR, revealed initial de-N-sulfation of the molecule (pH 1/ 40 °C) and unexpectedly identified the secondary sulfate of iduronate as more labile than the 6-O-sulfate of glucosamine residues under these conditions (pH 1/ 60 °C). Additionally, the loss of sulfate groups, rather than depolymerization, accounted for most of the reduction in molecular weight. This provides an alternative route to producing partially 2-O-de-sulfated heparin derivatives that avoids using conventional basic conditions and may be of value in the optimization of processes associated with the production of heparin pharmaceuticals.


Subject(s)
Anticoagulants/chemistry , Heparin/chemistry , Sulfates/analysis , Animals , Hydrogen-Ion Concentration , Hydrolysis , Magnetic Resonance Spectroscopy , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...