Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(6): 2942-2960, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38153127

ABSTRACT

Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Prophages/genetics , Prophages/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA Restriction-Modification Enzymes/metabolism
2.
Article in English | MEDLINE | ID: mdl-37889219

ABSTRACT

The present study investigates silicone transfer occurring during microcontact printing (µCP) of lectins with polydimethylsiloxane (PDMS) stamps and its impact on the adhesion of cells. Static adhesion assays and single-cell force spectroscopy (SCFS) are used to compare adhesion of nonmalignant (HCV29) and cancer (HT1376) bladder cells, respectively, to high-affinity lectin layers (PHA-L and WGA, respectively) prepared by physical adsorption and µCP. The chemical composition of the µCP lectin patterns was monitored by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We show that the amount of transferred silicone in the µCP process depends on the preprocessing of the PDMS stamps. It is revealed that silicone contamination within the patterned lectin layers inhibits the adhesion of bladder cells, and the work of adhesion is lower for µCP lectins than for drop-cast lectins. The binding capacity of microcontact printed lectins was larger when the PDMS stamps were treated with UV ozone plasma as compared to sonication in ethanol and deionized water. ToF-SIMS data show that ozone-based treatment of PDMS stamps used for µCP of lectin reduces the silicone contamination in the imprinting protocol regardless of stamp geometry (flat vs microstructured). The role of other possible contributors, such as the lectin conformation and organization of lectin layers, is also discussed.

3.
Front Microbiol ; 14: 1303794, 2023.
Article in English | MEDLINE | ID: mdl-38312500

ABSTRACT

Introduction: In the era of increasing bacterial resistance to antibiotics, new bactericidal substances are sought, and lysins derived from extremophilic organisms have the undoubted advantage of being stable under harsh environmental conditions. The PhiKo endolysin is derived from the phiKo bacteriophage infecting Gram-negative extremophilic bacterium Thermus thermophilus HB27. This enzyme shows similarity to two previously investigated thermostable type-2 amidases, the Ts2631 and Ph2119 from Thermus scotoductus bacteriophages, that revealed high lytic activity not only against thermophiles but also against Gram-negative mesophilic bacteria. Therefore, antibacterial potential of the PhiKo endolysin was investigated in the study presented here. Methods: Enzyme activity was assessed using turbidity reduction assays (TRAs) and antibacterial tests. Differential scanning calorimetry was applied to evaluate protein stability. The Collection of Anti-Microbial Peptides (CAMP) and Antimicrobial Peptide Calculator and Predictor (APD3) were used to predict regions with antimicrobial potential in the PhiKo primary sequence. The minimum inhibitory concentration (MIC) of the RAP-29 synthetic peptide was determined against Gram-positive and Gram-negative selected strains, and mechanism of action was investigated with use of membrane potential sensitive fluorescent dye 3,3'-Dipropylthiacarbocyanine iodide (DiSC3(5)). Results and discussion: The PhiKo endolysin is highly thermostable with melting temperature of 91.70°C. However, despite its lytic effect against such extremophiles as: T. thermophilus, Thermus flavus, Thermus parvatiensis, Thermus scotoductus, and Deinococcus radiodurans, PhiKo showed moderate antibacterial activity against mesophiles. Consequently, its protein sequence was searched for regions with potential antibacterial activity. A highly positively charged region was identified and synthetized (PhiKo105-133). The novel RAP-29 peptide lysed mesophilic strains of staphylococci and Gram-negative bacteria, reducing the number of cells by 3.7-7.1 log units and reaching the minimum inhibitory concentration values in the range of 2-31 µM. This peptide is unstructured in an aqueous solution but forms an α-helix in the presence of detergents. Moreover, it binds lipoteichoic acid and lipopolysaccharide, and causes depolarization of bacterial membranes. The RAP-29 peptide is a promising candidate for combating bacterial pathogens. The existence of this cryptic peptide testifies to a much wider panel of antimicrobial peptides than thought previously.

4.
Int J Mol Sci ; 23(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887293

ABSTRACT

We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3'-5' exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3'-5' exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme's activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme's moderate thermal stability.


Subject(s)
Bacteriophages , Thermus thermophilus , Amino Acid Sequence , Bacteriophages/metabolism , DNA-Directed DNA Polymerase/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphodiesterase I/metabolism , Thermus thermophilus/metabolism
5.
Nucleic Acids Res ; 50(D1): D1535-D1540, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718696

ABSTRACT

Proteome-pI 2.0 is an update of an online database containing predicted isoelectric points and pKa dissociation constants of proteins and peptides. The isoelectric point-the pH at which a particular molecule carries no net electrical charge-is an important parameter for many analytical biochemistry and proteomics techniques. Additionally, it can be obtained directly from the pKa values of individual charged residues of the protein. The Proteome-pI 2.0 database includes data for over 61 million protein sequences from 20 115 proteomes (three to four times more than the previous release). The isoelectric point for proteins is predicted by 21 methods, whereas pKa values are inferred by one method. To facilitate bottom-up proteomics analysis, individual proteomes were digested in silico with the five most commonly used proteases (trypsin, chymotrypsin, trypsin + LysC, LysN, ArgC), and the peptides' isoelectric point and molecular weights were calculated. The database enables the retrieval of virtual 2D-PAGE plots and customized fractions of a proteome based on the isoelectric point and molecular weight. In addition, isoelectric points for proteins in NCBI non-redundant (nr), UniProt, SwissProt, and Protein Data Bank are available in both CSV and FASTA formats. The database can be accessed at http://isoelectricpointdb2.org.


Subject(s)
Databases, Protein , Isoelectric Point , Peptides/chemistry , Proteome/chemistry , Amino Acid Sequence/genetics , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Molecular Weight , Proteome/classification , Proteomics/standards
6.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34502443

ABSTRACT

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Subject(s)
Clostridium botulinum type E/enzymology , Endopeptidases/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Amino Acid Sequence , Catalytic Domain , Clostridium/drug effects , Clostridium/ultrastructure , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Endopeptidases/pharmacology , Lipopolysaccharides/metabolism , Microbial Sensitivity Tests , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/isolation & purification , N-Acetylmuramoyl-L-alanine Amidase/pharmacology , Prophages/enzymology , Teichoic Acids/metabolism
7.
FEMS Microbiol Lett ; 368(12)2021 06 24.
Article in English | MEDLINE | ID: mdl-34114607

ABSTRACT

The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.


Subject(s)
Genome, Viral/genetics , Metagenomics , Bioprospecting/organization & administration , Computational Biology , Databases, Genetic , Europe , Hydrothermal Vents/virology , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virome/genetics , Viruses/classification , Viruses/genetics
8.
Nucleic Acids Res ; 49(W1): W285-W292, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33905510

ABSTRACT

The isoelectric point is the pH at which a particular molecule is electrically neutral due to the equilibrium of positive and negative charges. In proteins and peptides, this depends on the dissociation constant (pKa) of charged groups of seven amino acids and NH+ and COO- groups at polypeptide termini. Information regarding isoelectric point and pKa is extensively used in two-dimensional gel electrophoresis (2D-PAGE), capillary isoelectric focusing (cIEF), crystallisation, and mass spectrometry. Therefore, there is a strong need for the in silico prediction of isoelectric point and pKa values. In this paper, I present Isoelectric Point Calculator 2.0 (IPC 2.0), a web server for the prediction of isoelectric points and pKa values using a mixture of deep learning and support vector regression models. The prediction accuracy (RMSD) of IPC 2.0 for proteins and peptides outperforms previous algorithms: 0.848 versus 0.868 and 0.222 versus 0.405, respectively. Moreover, the IPC 2.0 prediction of pKa using sequence information alone was better than the prediction from structure-based methods (0.576 versus 0.826) and a few folds faster. The IPC 2.0 webserver is freely available at www.ipc2-isoelectric-point.org.


Subject(s)
Isoelectric Point , Peptides/chemistry , Proteins/chemistry , Software , Deep Learning , Sequence Analysis, Protein , Support Vector Machine
10.
Sensors (Basel) ; 20(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987696

ABSTRACT

Polymer-matrix composites degrade under the influence of UV radiation in the range of the 290-400 nm band. The degradation of polymer-matrix composites exposed to UV radiation is characterized by extensive aging of the epoxy matrix, resulting in deterioration of their mechanical properties. Glass fibers/epoxy resin composites were made by an out-of-autoclave method whereas a fiber optic sensor was placed between different layers of laminates. In our work, we used a fiber Bragg grating sensor covered with graphene oxide and embedded in a polymer matrix composite to monitor UV radiation intensity. Measurements of UV radiation may allow monitoring the aging process of individual components of the polymer composite. In order to estimate the number of microcracks of epoxy resin, microstructure observations were carried out using a scanning electron microscope.

11.
Mol Cell ; 78(5): 890-902.e6, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32416068

ABSTRACT

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy" interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.


Subject(s)
High-Throughput Screening Assays/methods , Transcription Factors/genetics , Transcriptional Activation/genetics , Amino Acid Sequence/genetics , Basic-Leucine Zipper Transcription Factors/genetics , DNA-Binding Proteins/metabolism , Deep Learning , Protein Binding , Protein Domains/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Activation/physiology
12.
Sci Rep ; 9(1): 1261, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718611

ABSTRACT

To escape from hosts after completing their life cycle, bacteriophages often use endolysins, which degrade bacterial peptidoglycan. While mesophilic phages have been extensively studied, their thermophilic counterparts are not well characterized. Here, we present a detailed analysis of the structure and function of Ts2631 endolysin from thermophilic phage vB_Tsc2631, which is a zinc-dependent amidase. The active site of Ts2631 consists of His30, Tyr58, His131 and Cys139, which are involved in Zn2+ coordination and catalysis. We found that the active site residues are necessary for lysis yet not crucial for peptidoglycan binding. To elucidate residues involved in the enzyme interaction with peptidoglycan, we tested single-residue substitution variants and identified Tyr60 and Lys70 as essential residues. Moreover, substitution of Cys80, abrogating disulfide bridge formation, inactivates Ts2631, as do substitutions of His31, Thr32 and Asn85 residues. The endolysin contains a positively charged N-terminal extension of 20 residues that can protrude from the remainder of the enzyme and is crucial for peptidoglycan binding. We show that the deletion of 20 residues from the N-terminus abolished the bacteriolytic activity of the enzyme. Because Ts2631 exhibits intrinsic antibacterial activity and unusual thermal stability, it is perfectly suited as a scaffold for the development of antimicrobial agents.


Subject(s)
Bacteriophages/physiology , Endopeptidases/metabolism , Peptidoglycan/metabolism , Thermus/virology , Viral Proteins/metabolism , Bacteriolysis , Bacteriophages/chemistry , Bacteriophages/enzymology , Catalytic Domain , Endopeptidases/chemistry , Models, Molecular , Protein Conformation , Thermus/physiology , Viral Proteins/chemistry
13.
Nucleic Acids Res ; 45(D1): D1112-D1116, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27789699

ABSTRACT

Proteome-pI is an online database containing information about predicted isoelectric points for 5029 proteomes calculated using 18 methods. The isoelectric point, the pH at which a particular molecule carries no net electrical charge, is an important parameter for many analytical biochemistry and proteomics techniques, especially for 2D gel electrophoresis (2D-PAGE), capillary isoelectric focusing, liquid chromatography-mass spectrometry and X-ray protein crystallography. The database, available at http://isoelectricpointdb.org allows the retrieval of virtual 2D-PAGE plots and the development of customised fractions of proteome based on isoelectric point and molecular weight. Moreover, Proteome-pI facilitates statistical comparisons of the various prediction methods as well as biological investigation of protein isoelectric point space in all kingdoms of life. For instance, using Proteome-pI data, it is clear that Eukaryotes, which evolved tight control of homeostasis, encode proteins with pI values near the cell pH. In contrast, Archaea living frequently in extreme environments can possess proteins with a wide range of isoelectric points. The database includes various statistics and tools for interactive browsing, searching and sorting. Apart from data for individual proteomes, datasets corresponding to major protein databases such as UniProtKB/TrEMBL and the NCBI non-redundant (nr) database have also been precalculated and made available in CSV format.


Subject(s)
Computational Biology , Databases, Protein , Isoelectric Point , Proteome , Proteomics , Search Engine , Computational Biology/methods , Proteomics/methods , Web Browser
14.
Biol Direct ; 11(1): 55, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27769290

ABSTRACT

BACKGROUND: Accurate estimation of the isoelectric point (pI) based on the amino acid sequence is useful for many analytical biochemistry and proteomics techniques such as 2-D polyacrylamide gel electrophoresis, or capillary isoelectric focusing used in combination with high-throughput mass spectrometry. Additionally, pI estimation can be helpful during protein crystallization trials. RESULTS: Here, I present the Isoelectric Point Calculator (IPC), a web service and a standalone program for the accurate estimation of protein and peptide pI using different sets of dissociation constant (pKa) values, including two new computationally optimized pKa sets. According to the presented benchmarks, the newly developed IPC pKa sets outperform previous algorithms by at least 14.9 % for proteins and 0.9 % for peptides (on average, 22.1 % and 59.6 %, respectively), which corresponds to an average error of the pI estimation equal to 0.87 and 0.25 pH units for proteins and peptides, respectively. Moreover, the prediction of pI using the IPC pKa's leads to fewer outliers, i.e., predictions affected by errors greater than a given threshold. CONCLUSIONS: The IPC service is freely available at http://isoelectric.ovh.org Peptide and protein datasets used in the study and the precalculated pI for the PDB and some of the most frequently used proteomes are available for large-scale analysis and future development. REVIEWERS: This article was reviewed by Frank Eisenhaber and Zoltán Gáspári.


Subject(s)
Chemistry Techniques, Analytical/methods , Isoelectric Point , Proteomics/methods , Peptides/chemistry , Proteins/chemistry
15.
Proteins ; 84(8): 1021-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-25737479

ABSTRACT

We present a Model Quality Assessment Program (MQAP), called MQAPsingle, for ranking and assessing the absolute global quality of single protein models. MQAPsingle is quasi single-model MQAP, a method that combines advantages of both "pure" single-model MQAPs and clustering MQAPs. This approach results in higher accuracy compared to the state-of-the-art single-model MQAPs. Notably, the prediction for a given model is the same regardless if this model is submitted to our server alone or together with other models. Proteins 2016; 84:1021-1028. © 2015 Wiley Periodicals, Inc.


Subject(s)
Caspase 10/chemistry , Computational Biology/methods , Models, Molecular , Software , Benchmarking , Humans , Internet , Protein Conformation
16.
PLoS One ; 10(9): e0137374, 2015.
Article in English | MEDLINE | ID: mdl-26375388

ABSTRACT

Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 10(4) cal mol(-1)). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.


Subject(s)
Bacteriophages/enzymology , Catalytic Domain , Endopeptidases/chemistry , Endopeptidases/metabolism , Thermus/virology , Amino Acid Sequence , Bacteriophages/physiology , Cations, Divalent/pharmacology , Enzyme Stability , Models, Molecular , Molecular Sequence Data , Sodium Chloride/pharmacology , Substrate Specificity , Temperature
17.
Bioinformatics ; 31(21): 3499-505, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26130575

ABSTRACT

MOTIVATION: To date, only a few distinct successful approaches have been introduced to reconstruct a protein 3D structure from a map of contacts between its amino acid residues (a 2D contact map). Current algorithms can infer structures from information-rich contact maps that contain a limited fraction of erroneous predictions. However, it is difficult to reconstruct 3D structures from predicted contact maps that usually contain a high fraction of false contacts. RESULTS: We describe a new, multi-step protocol that predicts protein 3D structures from the predicted contact maps. The method is based on a novel distance function acting on a fuzzy residue proximity graph, which predicts a 2D distance map from a 2D predicted contact map. The application of a Multi-Dimensional Scaling algorithm transforms that predicted 2D distance map into a coarse 3D model, which is further refined by typical modeling programs into an all-atom representation. We tested our approach on contact maps predicted de novo by MULTICOM, the top contact map predictor according to CASP10. We show that our method outperforms FT-COMAR, the state-of-the-art method for 3D structure reconstruction from 2D maps. For all predicted 2D contact maps of relatively low sensitivity (60-84%), GDFuzz3D generates more accurate 3D models, with the average improvement of 4.87 Å in terms of RMSD. AVAILABILITY AND IMPLEMENTATION: GDFuzz3D server and standalone version are freely available at http://iimcb.genesilico.pl/gdserver/GDFuzz3D/. CONTACT: iamb@genesilico.pl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Molecular , Protein Conformation , Software , Algorithms , Amino Acids/chemistry , Proteins/chemistry , Sequence Analysis, Protein/methods
18.
Nucleic Acids Res ; 43(5): 2864-73, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25634891

ABSTRACT

Ribonucleases (RNases) play a critical role in RNA processing and degradation by hydrolyzing phosphodiester bonds (exo- or endonucleolytically). Many RNases that cut RNA internally exhibit substrate specificity, but their target sites are usually limited to one or a few specific nucleotides in single-stranded RNA and often in a context of a particular three-dimensional structure of the substrate. Thus far, no RNase counterparts of restriction enzymes have been identified which could cleave double-stranded RNA (dsRNA) in a sequence-specific manner. Here, we present evidence for a sequence-dependent cleavage of long dsRNA by RNase Mini-III from Bacillus subtilis (BsMiniIII). Analysis of the sites cleaved by this enzyme in limited digest of bacteriophage Φ6 dsRNA led to the identification of a consensus target sequence. We defined nucleotide residues within the preferred cleavage site that affected the efficiency of the cleavage and were essential for the discrimination of cleavable versus non-cleavable dsRNA sequences. We have also determined that the loop α5b-α6, a distinctive structural element in Mini-III RNases, is crucial for the specific cleavage, but not for dsRNA binding. Our results suggest that BsMiniIII may serve as a prototype of a sequence-specific dsRNase that could possibly be used for targeted cleavage of dsRNA.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Amino Acid Sequence , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Binding Sites/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , Ribonuclease III/chemistry , Ribonuclease III/genetics , Sequence Homology, Amino Acid , Substrate Specificity
19.
BMC Plant Biol ; 14: 168, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24939387

ABSTRACT

BACKGROUND: In flowering plants a number of genes have been identified which control the transition from a vegetative to generative phase of life cycle. In bryophytes representing basal lineage of land plants, there is little data regarding the mechanisms that control this transition. Two species from bryophytes - moss Physcomitrella patens and liverwort Marchantia polymorpha are under advanced molecular and genetic research. The goal of our study was to identify genes connected to female gametophyte development and archegonia production in the dioecious liverwort Pellia endiviifolia species B, which is representative of the most basal lineage of the simple thalloid liverworts. RESULTS: The utility of the RDA-cDNA technique allowed us to identify three genes specifically expressed in the female individuals of P.endiviifolia: PenB_CYSP coding for cysteine protease, PenB_MT2 and PenB_MT3 coding for Mysterious Transcripts1 and 2 containing ORFs of 143 and 177 amino acid residues in length, respectively. The exon-intron structure of all three genes has been characterized and pre-mRNA processing was investigated. Interestingly, five mRNA isoforms are produced from the PenB_MT2 gene, which result from alternative splicing within the second and third exon. All observed splicing events take place within the 5'UTR and do not interfere with the coding sequence. All three genes are exclusively expressed in the female individuals, regardless of whether they were cultured in vitro or were collected from a natural habitat. Moreover we observed ten-fold increased transcripts level for all three genes in the archegonial tissue in comparison to the vegetative parts of the same female thalli grown in natural habitat suggesting their connection to archegonia development. CONCLUSIONS: We have identified three genes which are specifically expressed in P.endiviifolia sp B female gametophytes. Moreover, their expression is connected to the female sex-organ differentiation and is developmentally regulated. The contribution of the identified genes may be crucial for successful liverwort sexual reproduction.


Subject(s)
Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hepatophyta/growth & development , Hepatophyta/genetics , Ovule/genetics , Spores/growth & development , Spores/genetics , Amino Acid Sequence , Computational Biology , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Ecosystem , Genes, Plant , Models, Molecular , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Structure, Secondary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Alignment , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...