Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(12)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35744391

ABSTRACT

The paper presents the results of the preparation of bulk and porous Ti-Ta-Ag alloys. The first step of this study was the preparation of the powder alloys using mechanical alloying (MA). The second was hot-pressing consolidation and sintering with a space holder, which resulted in high-density and high-porosity (approximately 70%) samples, respectively. Porosity, morphology, mechanical properties, biocompatibility, and antibacterial behavior were investigated and related to the preparation procedures. The authors found that Ta and Ag heavily influence the microstructure and determine other biomaterial-related properties. These new materials showed positive behavior in the MTT assay, and antibacterial properties. Such materials could find applications in the production of hard tissue implants.

2.
J Neurosci ; 40(20): 3915-3932, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32341094

ABSTRACT

Loss of sensory hair cells causes permanent hearing and balance deficits in humans and other mammals, but for nonmammals such deficits are temporary. Nonmammals recover hearing and balance sensitivity after supporting cells proliferate and differentiate into replacement hair cells. Evidence of mechanical differences between those sensory epithelia and their supporting cells prompted us to investigate whether the capacity to activate YAP, an effector in the mechanosensitive Hippo pathway, correlates with regenerative capacity in acceleration-sensing utricles of chickens and mice of both sexes. After hair cell ablation, YAP accumulated in supporting cell nuclei in chicken utricles and promoted regenerative proliferation, but YAP remained cytoplasmic and little proliferation occurred in mouse utricles. YAP localization in supporting cells was also more sensitive to shape change and inhibition of MST1/2 in chicken utricles than in mouse utricles. Genetic manipulations showed that in vivo expression of the YAP-S127A variant caused robust proliferation of neonatal mouse supporting cells, which produced progeny that expressed hair cell markers, but proliferative responses declined postnatally. Expression of YAP-5SA, which more effectively evades inhibitory phosphorylation, resulted in TEAD-dependent proliferation of striolar supporting cells, even in adult utricles. Conditional deletion of LATS1/2 kinases abolished the inhibitory phosphorylation of endogenous YAP and led to striolar proliferation in adult mouse utricles. The findings suggest that damage overcomes inhibitory Hippo signaling and facilitates regenerative proliferation in nonmammalian utricles, whereas constitutive LATS1/2 kinase activity suppresses YAP-TEAD signaling in mammalian utricles and contributes to maintaining the proliferative quiescence that appears to underlie the permanence of sensory deficits.SIGNIFICANCE STATEMENT Loud sounds, ototoxic drugs, infections, and aging kill sensory hair cells in the ear, causing irreversible hearing loss and balance deficits for millions. In nonmammals, damage evokes shape changes in supporting cells, which can divide and regenerate hair cells. Such shape changes are limited in mammalian ears, where supporting cells develop E-cadherin-rich apical junctions reinforced by robust F-actin bands, and the cells fail to divide. Here, we find that damage readily activates YAP in supporting cells within balance epithelia of chickens, but not mice. Deleting LATS kinases or expressing YAP variants that evade LATS-mediated inhibitory phosphorylation induces proliferation in supporting cells of adult mice. YAP signaling eventually may be harnessed to overcome proliferative quiescence that limits regeneration in mammalian ears.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Cycle Proteins/physiology , Hair Cells, Auditory/physiology , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Protein Serine-Threonine Kinases/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Animals, Newborn , Cell Cycle Proteins/genetics , Cell Proliferation , Chick Embryo , Chickens , Gene Deletion , Genetic Variation , Hearing Loss/genetics , Hepatocyte Growth Factor/antagonists & inhibitors , Long-Acting Thyroid Stimulator , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Saccule and Utricle/drug effects , Serine-Threonine Kinase 3 , Species Specificity , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
3.
J Neurosci ; 40(13): 2618-2632, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32079647

ABSTRACT

Sensory hair cell losses underlie the vast majority of permanent hearing and balance deficits in humans, but many nonmammalian vertebrates can fully recover from hearing impairments and balance dysfunctions because supporting cells (SCs) in their ears retain lifelong regenerative capacities that depend on proliferation and differentiation as replacement hair cells. Most SCs in vertebrate ears stop dividing during embryogenesis; and soon after birth, vestibular SCs in mammals transition to lasting quiescence as they develop massively thickened circumferential F-actin bands at their E-cadherin-rich adherens junctions. Here, we report that treatment with EGF and a GSK3 inhibitor thinned the circumferential F-actin bands throughout the sensory epithelium of cultured utricles that were isolated from adult mice of either sex. That treatment also caused decreases in E-cadherin, ß-catenin, and YAP in the striola, and stimulated robust proliferation of mature, normally quiescent striolar SCs. The findings suggest that E-cadherin-rich junctions, which are not present in the SCs of the fish, amphibians, and birds which readily regenerate hair cells, are responsible in part for the mammalian ear's vulnerability to permanent balance and hearing deficits.SIGNIFICANCE STATEMENT Millions of people are affected by hearing and balance deficits that arise when loud sounds, ototoxic drugs, infections, and aging cause hair cell losses. Such deficits are permanent for humans and other mammals, but nonmammals can recover hearing and balance after supporting cells regenerate replacement hair cells. Mammalian supporting cells lose the capacity to proliferate around the time they develop unique, exceptionally reinforced, E-cadherin-rich intercellular junctions. Here, we report the discovery of a pharmacological treatment that thins F-actin bands, depletes E-cadherin, and stimulates proliferation in long-quiescent supporting cells within a balance epithelium from adult mice. The findings suggest that high E-cadherin in those supporting cell junctions may be responsible, in part, for the permanence of hair cell loss in mammals.


Subject(s)
Cadherins/metabolism , Cell Proliferation/drug effects , Epidermal Growth Factor/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Hair Cells, Auditory/drug effects , Saccule and Utricle/drug effects , Actins/metabolism , Animals , Cadherins/genetics , Hair Cells, Auditory/metabolism , Mice , Pyridines/pharmacology , Pyrimidines/pharmacology , Saccule and Utricle/metabolism , beta Catenin/metabolism
4.
Materials (Basel) ; 12(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443338

ABSTRACT

The paper presents a promising method of preparation of titanium-based foams by the thermal dealloying method. The first step of this study was the Ti-Ta-Mg based nanopowder preparation using the mechanical alloying (MA) process performed at room temperature. The next step was forming the green compacts by cold pressing and then sintering with magnesium dealloying from the titanium-based alloy structure. The mechanism of the porous structure formation was based on the removal of magnesium from the titanium alloy at a temperature higher than the boiling point of magnesium (1090 °C). The influence of the Mg content on the formation of the porous Ti-30Ta foam has been investigated. The sintering stage was performed in vacuum. During the dealloying process, the magnesium atoms diffuse from the middle to the surface of the sample and combine to form vapors and then evaporate leaving pores surrounded by the metallic scaffold. The porosity, the mechanical properties as well as biocompatibility have been investigated. The titanium-based foam of high porosity (up to 76%) and the pore size distribution from nano- to micro-scale have been successfully prepared. For the medical applications, the Ti-Ta metallic foams have shown a positive behavior in the MTT test. The as-shown results clearly exhibit a great potential for thermal dealloying in the preparation of porous structures.

5.
PLoS One ; 13(2): e0191860, 2018.
Article in English | MEDLINE | ID: mdl-29444108

ABSTRACT

Siderophores are small molecules synthesized and secreted by bacteria and fungi to scavenge iron. Extracellular ferri-siderohores are recognized by cognate receptors on the cell surface for transport over membranes. Several siderophore systems from Vibrionaceae representatives are known and well understood, e.g., the molecular structure of the siderophore, the biosynthesis gene cluster and pathway, and the gene expression pattern. Less is known about how these systems are distributed among the ~140 Vibrionaceae species, and which evolutionary processes contributed to the present-day distribution. In this work, we compiled existing knowledge on siderophore biosynthesis systems and siderophore receptors from Vibrionaceae and used phylogenetic analyses to investigate their organization, distribution, origin and evolution. Through literature searches, we identified nine different siderophore biosynthesis systems and thirteen siderophore receptors in Vibrionaceae. Homologs were identified by BLAST searches, and the results were mapped onto a Vibrionaceae phylogeny. We identified 81 biosynthetic systems distributed in 45 Vibrionaceae species and 16 unclassified Vibrionaceae strains, and 409 receptors in 89 Vibrionaceae species and 49 unclassified Vibrionaceae strains. The majority of taxa are associated with at least one type of siderophore biosynthesis system, some (e.g., aerobactin and vibrioferrin) of which are widely distributed in the family, whereas others (i.e., bisucaberin and vibriobactin) are found in one lineage. Cognate receptors are found more widespread. Phylogenetic analysis of three siderophore systems (piscibactin, vibrioferrin and aerobactin) show that their present-day distribution can be explained by an old insertion into Vibrionaceae, followed mainly by stable vertical evolution and extensive loss, and some cases of horizontal gene transfers. The present work provides an up to date overview of the distribution of siderophore-based iron acquisition systems in Vibrionaceae, and presents phylogenetic analysis of these systems. Our results suggest that the present-day distribution is a result of several evolutionary processes, such as old and new gene acquisitions, gene loss, and both vertical and horizontal gene transfers.


Subject(s)
Phylogeny , Siderophores/genetics , Vibrionaceae/classification , Database Management Systems
6.
J Incl Phenom Macrocycl Chem ; 87(1): 53-65, 2017.
Article in English | MEDLINE | ID: mdl-28255265

ABSTRACT

ABSTRACT: The synthesis of a novel supramolecular system comprising of branched polyethylenimine and cyclodextrin, is presented. The synthesis route is based on the self-assembly phenomena with the inclusion of solvent molecules. The systems are formed by a hydrogen-bonding network and host-guest type interactions between the building blocks. It was found that the native cyclodextrin and polyethylenimine are able to form stable systems when the reaction medium constitutes a polar solvent forming host-guest type complexes with cyclodextrin. A special consideration was paid on the detailed spectroscopic analyses of the obtained water-soluble constructs, including ROESY and diffusion-ordered (DOSY) NMR spectroscopy studies. The versatility and significance of DOSY technique for the analysis of the cyclodextrin complexes and its non-covalent systems with branched polymers, were presented. It was also found that the guest molecules that were incorporated in the complexes exhibited enhanced thermal stability. The morphological details in the solid state were obtained by scanning electron microscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...