Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1867(1): 130253, 2023 01.
Article in English | MEDLINE | ID: mdl-36228877

ABSTRACT

BACKGROUND: Cells exposed to stress factors experience time-dependent variations of metabolite concentration, acting as reliable sensors of the effective concentration of drugs in solution. NMR can detect and quantify changes in metabolite concentration, thus providing an indirect estimate of drug concentration. The quantification of bactericidal molecules released from antimicrobial-treated biomedical materials is crucial to determine their biocompatibility and the potential onset of drug resistance. METHODS: Real-time NMR measurements of extracellular metabolites produced by bacteria grown in the presence of known concentrations of an antibacterial molecule (irgasan) are employed to quantify the bactericidal molecule released from antimicrobial-treated biomedical devices. Viability tests assess their activity against E. coli and S. aureus planktonic and sessile cells. AFM and contact angle measurements assisted in the determination of the mechanism of antibacterial action. RESULTS: NMR-derived concentration kinetics of metabolites produced by bacteria grown in contact with functionalized materials allows for indirectly evaluating the effective concentration of toxic substances released from the device, lowering the detection limit to the nanomolar range. NMR, AFM and contact angle measurements support a surface-killing mechanism of action against bacteria. CONCLUSIONS: The NMR based approach provides a reliable tool to estimate bactericidal molecule release from antimicrobial materials. GENERAL SIGNIFICANCE: The novelty of the proposed NMR-based strategy is that it i) exploits bacteria as sensors of the presence of bactericidal molecules in solution; ii) is independent of the chemo-physical properties of the analyte; iii) establishes the detection limit to nanomolar concentrations.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Anti-Infective Agents/pharmacology
2.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432336

ABSTRACT

Shaping two-dimensional (2D) materials in arbitrarily complex geometries is a key to designing their unique physical properties in a controlled fashion. This is an elegant solution, taking benefit from the extreme flexibility of the 2D layers but requiring the ability to force their spatial arrangement from flat to curved geometries in a delicate balance among free-energy contributions from strain, slip-and-shear mechanisms, and adhesion to the substrate. Here, we report on a chemical vapor deposition approach, which takes advantage of the surfactant effects of organic molecules, namely the tetrapotassium salt of perylene-3,4,9,10-tetracarboxylic acid (PTAS), to conformally grow atomically thin layers of molybdenum disulphide (MoS2) on arbitrarily nanopatterned substrates. Using atomically resolved transmission electron microscope images and density functional theory calculations, we show that the most energetically favorable condition for the MoS2 layers consists of its adaptation to the local curvature of the patterned substrate through a shear-and-slip mechanism rather than strain accumulation. This conclusion also reveals that the perylene-based molecules have a role in promoting the adhesion of the layers onto the substrate, no matter the local-scale geometry.

3.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296672

ABSTRACT

The selective detection of metal ions in water, using sustainable detection systems, is of crescent importance for monitoring water environments and drinking water safety. One of the key elements of future chemical sciences is the use of sustainable approaches in the design of new materials. In this study, we design and synthesize a low-cost, water-soluble potassium salt of 3,4,9,10-perylene tetracarboxylic acid (PTAS), which shows a selective optical response on the addition of Cu2+ and Pb2+ ions in aqueous solutions. By using a water-soluble chromophore, the interactions with the metal ions are definitely more intimate and efficient, with respect to standard methods employing cosolvents. The detection limits of PTAS for both Cu2+ and Pb2+ are found to be 2 µM by using a simple absorbance mode, and even lower (1 µM) with NMR experiments, indicating that this analyte-probe system is sensitive enough for the detection of copper ions in drinking water and lead ions in waste water. The complexation of PTAS with both ions is supported with NMR studies, which reveal the formation of new species between PTAS and analytes. By combining a low-cost water-soluble chromophore with efficient analyte-probe interactions due to the use of aqueous solutions, the results here obtained provide a basis for designing sustainable sensing systems.


Subject(s)
Drinking Water , Perylene , Perylene/chemistry , Copper/chemistry , Lead , Wastewater , Ions , Potassium
4.
Materials (Basel) ; 13(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823655

ABSTRACT

Silk fibroin is a biocompatible, non-toxic, mechanically robust protein, and it is commonly used and studied as a material for biomedical applications. Silk fibroin also gained particular interest as a drug carrier vehicle, and numerous silk formats have been investigated for this purpose. Herein, we have prepared electrospun nanofibers from pure silk fibroin and blended silk fibroin/casein, followed by the incorporation of an anti-inflammatory drug, diclofenac. Casein serves as an excipient in pharmaceutical products and has a positive effect on the gradual release of drugs. The characteristics of the investigated composites were estimated by scanning electron microscope, transmission electron microscope, thermogravimetric analysis, and a lifetime of diclofenac by electron paramagnetic resonance analysis. The cumulative release in vitro of diclofenac sodium salt, together with the antiproliferative effect of diclofenac sodium salt-loaded silk nanofibers against the growth of two cancer cell lines, are presented and discussed.

5.
Materials (Basel) ; 13(12)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575719

ABSTRACT

In the 2D material framework, molybdenum disulfide (MoS2) was originally studied as an archetypical transition metal dichalcogenide (TMD) material. The controlled synthesis of large-area and high-crystalline MoS2 remains a challenge for distinct practical applications from electronics to electrocatalysis. Among the proposed methods, chemical vapor deposition (CVD) is a promising way for synthesizing high-quality MoS2 from isolated domains to a continuous film because of its high flexibility. Herein, we report on a systematic study of the effects of growth pressure, temperature, time, and vertical height between the molybdenum trioxide (MoO3) source and the substrate during the CVD process that influence the morphology, domain size, and uniformity of thickness with controlled parameters over a large scale. The substrate was pretreated with perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) seed molecule that promoted the layer growth of MoS2. Further, we characterized the as-grown MoS2 morphologies, layer quality, and physical properties by employing scanning electron microscopy (SEM), Raman spectroscopy, and photoluminescence (PL). Our experimental findings demonstrate the effectiveness and versatility of the CVD approach to synthesize MoS2 for various target applications.

6.
Langmuir ; 22(5): 2378-83, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16489832

ABSTRACT

A flavin-modified gold electrode was developed in order to catalyze the electrochemical oxidoreduction of flavoproteins. Surface modification was carried out by a two-step procedure. In the first step a mixed self-assembled monolayer obtained by adsorption of activated and nonactivated 3,3'-dithiopropionic acid (free acid and N-succinimidyl ester) was formed, followed by the covalent attachment of a N(10)-hexylamino-alkylated flavin derivative via an amide bond in the second step. The electrochemical properties of the flavin-modified electrode are presented and discussed. The redox potential of the attached flavin was measured at various pH values and the electron-transfer rate constant between electrode and flavin was determined as k0 = 5 s(-1) independent of pH. The flavin-modified electrode was successfully applied to the electrochemical and spectroelectrochemical investigation of the flavoprotein WrbA from Escherichia coli that shows some structural similarities to flavodoxins. It is concluded that the electron transfer "electrode --> flavin --> flavoprotein" occurs by a two-step hopping mechanism where the first step is rate determining. Kinetic details are discussed. Furthermore, it turned out that, in contrast to flavodoxins, where the semiquinone state is stabilized, WrbA rapidly takes up two electrons, directly leading to the fully reduced form. The presented electrode surface modification may generally lend itself for spectroelectrochemical investigations of flavoproteins.


Subject(s)
Flavoproteins/chemistry , Adsorption , Coated Materials, Biocompatible , DNA-Binding Proteins/chemistry , Electrochemistry , Electrodes , Escherichia coli Proteins/chemistry , Flavins/chemistry , Gold , Hydrogen-Ion Concentration , Repressor Proteins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...