Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Biol Chem ; 300(8): 107501, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944119

ABSTRACT

L-Fucose (6-deoxy-L-galactose), a monosaccharide abundant in glycolipids and glycoproteins produced by mammalian cells, has been extensively studied for its role in intracellular biosynthesis and recycling of GDP-L-fucose for fucosylation. However, in certain mammalian species, L-fucose is efficiently broken down to pyruvate and lactate in a poorly understood metabolic pathway. In the 1970s, L-fucose dehydrogenase, an enzyme responsible for the initial step of this pathway, was partially purified from pig and rabbit livers and characterized biochemically. However, its molecular identity remained elusive until recently. This study reports the purification, identification, and biochemical characterization of the mammalian L-fucose dehydrogenase. The enzyme was purified from rabbit liver approximately 340-fold. Mass spectrometry analysis of the purified protein preparation identified mammalian hydroxysteroid 17-ß dehydrogenase 14 (HSD17B14) as the sole candidate enzyme. Rabbit and human HSD17B14 were expressed in HEK293T and Escherichia coli, respectively, purified, and demonstrated to catalyze the oxidation of L-fucose to L-fucono-1,5-lactone, as confirmed by mass spectrometry and NMR analysis. Substrate specificity studies revealed that L-fucose is the preferred substrate for both enzymes. The human enzyme exhibited a catalytic efficiency for L-fucose that was 359-fold higher than its efficiency for estradiol. Additionally, recombinant rat HSD17B14 exhibited negligible activity towards L-fucose, consistent with the absence of L-fucose metabolism in this species. The identification of the gene-encoding mammalian L-fucose dehydrogenase provides novel insights into the substrate specificity of enzymes belonging to the 17-ß-hydroxysteroid dehydrogenase family. This discovery also paves the way for unraveling the physiological functions of the L-fucose degradation pathway, which remains enigmatic.

2.
Magn Reson Chem ; 61(1): 49-54, 2023 01.
Article in English | MEDLINE | ID: mdl-36082753

ABSTRACT

We report a detailed 1 H NMR and 11 B NMR study of as synthesised Li ( BH 3 NH 2 BH 2 NH 2 BH 3 ) obtained in a novel dry-synthesis method. A combination of 1D and 2D single- and triple-quantum techniques was used for the assignment of all observed signals. Minor side-products and reactants were detected in the product: NH 3 BH 3 , Li ( NH 2 BH 3 ) , Li ( BH 4 ) , and two yet unknown salts containing 7-membered chain anions: ( BH 3 NH 2 BH 2 NH 2 BH 2 NH 2 BH 3 ) - and ( BH ( NH 2 BH 3 ) 3 ) - . We believe the assignment provided within this study might be helpful when analysing the mixtures containing numerous ammonia borane derivatives, which often give overlapping signals that are hard to distinguish.


Subject(s)
Boranes , Ammonia/chemistry , Anions , Boranes/chemistry , Magnetic Resonance Spectroscopy , Lithium/chemistry , Protons
3.
RSC Adv ; 12(14): 8345-8360, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35424802

ABSTRACT

The structural studies on two bromo-substituted derivatives of 2-deoxy-d-glucose (2-DG), namely 2-deoxy-2-bromo-d-glucose (2-BG) and 2-deoxy-2-bromo-d-mannose (2-BM) are described. 2-DG itself is an inhibitor of hexokinase, the first enzyme in the glycolysis process, playing a vital role in both cancer cell metabolism and viral replication in host cells. Because of that, 2-DG derivatives are considered as potential anti-cancer and anti-viral drugs. An X-ray quantum crystallography approach allowed us to obtain more accurate positions of hydrogen atoms by applying Hirshfeld atom refinement, providing a better description of hydrogen bonding even in the case of data from routine X-ray experiments. Obtained structures showed that the introduction of bromine at the C2 position in the pyranose ring has a minor influence on its conformation but still, it has a noticeable effect on the crystal structure. Bromine imposes the formation of a layered supramolecular landscape containing hydrogen bonds, which involves the bromine atom. Periodic DFT calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings and highlighted energetic changes upon bromine substitution. Based on molecular wavefunction from the refinement, we calculated the electrostatic potential, Laplacian, and ELI-D, and applied them to charge-density studies, which confirmed the geometry of hydrogen bonding and involvement of the bromine atom with these intermolecular interactions. NMR studies in the solution show that both compounds do not display significant differences in their anomeric equilibria compared to 2-DG, and the pyranose ring puckering is similar in both aqueous and solid state.

5.
J Biol Chem ; 298(2): 101573, 2022 02.
Article in English | MEDLINE | ID: mdl-35007534

ABSTRACT

Autophagy is a lysosomal degradation pathway for the removal of damaged and superfluous cytoplasmic material. This is achieved by the sequestration of this cargo material within double-membrane vesicles termed autophagosomes. Autophagosome formation is mediated by the conserved autophagy machinery. In selective autophagy, this machinery including the transmembrane protein Atg9 is recruited to specific cargo material via cargo receptors and the Atg11/FIP200 scaffold protein. The molecular details of the interaction between Atg11 and Atg9 are unclear, and it is still unknown how the recruitment of Atg9 is regulated. Here we employ NMR spectroscopy of the N-terminal disordered domain of Atg9 (Atg9-NTD) to map its interaction with Atg11 revealing that it involves two short peptides both containing a PLF motif. We show that the Atg9-NTD binds to Atg11 with an affinity of about 1 µM and that both PLF motifs contribute to the interaction. Mutation of the PLF motifs abolishes the interaction of the Atg9-NTD with Atg11, reduces the recruitment of Atg9 to the precursor aminopeptidase 1 (prApe1) cargo, and blocks prApe1 transport into the vacuole by the selective autophagy-like cytoplasm-to-vacuole (Cvt) targeting pathway while not affecting bulk autophagy. Our results provide mechanistic insights into the interaction of the Atg11 scaffold with the Atg9 transmembrane protein in selective autophagy and suggest a model where only clustered Atg11 when bound to the prApe1 cargo is able to efficiently recruit Atg9 vesicles.


Subject(s)
Saccharomyces cerevisiae Proteins , Vacuoles , Aminopeptidases/metabolism , Autophagy , Autophagy-Related Proteins/metabolism , Cytoplasm/metabolism , Membrane Proteins/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism
6.
Metallomics ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: mdl-34850061

ABSTRACT

Streptomyces griseus, a bacterium producing antibacterial drugs and featuring possible application in phytoremediation, expresses two metal-dependent superoxide dismutase (SOD) enzymes, containing either Fe(II) or Ni(II) in their active site. In particular, the alternative expression of the two proteins occurs in a metal-dependent mode, with the Fe(II)-enzyme gene (sodF) repressed at high intracellular Ni(II) concentrations by a two-component system (TCS). This complex involves two proteins, namely SgSrnR and SgSrnQ, which represent the transcriptional regulator and the Ni(II) sensor of the system, respectively. SgSrnR belongs to the ArsR/SmtB family of metal-dependent transcription factors; in the apo-form and in the absence of SgSrnQ, it can bind the DNA operator of sodF, upregulating gene transcription. According to a recently proposed hypothesis, Ni(II) binding to SgSrnQ would promote its interaction with SgSrnR, causing the release of the complex from DNA and the consequent downregulation of the sodF expression. SgSrnQ is predicted to be highly disordered, thus the understanding, at the molecular level, of how the SgSrnR/SgSrnQ TCS specifically responds to Ni(II) requires the knowledge of the structural, dynamic, and functional features of SgSrnR. These were investigated synergistically in this work using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, atomistic molecular dynamics calculations, isothermal titration calorimetry, and in silico molecular docking. The results reveal that the homodimeric apo-SgSrnR binds to its operator in a two-step process that involves the more rigid globular portion of the protein and leaves its largely disordered regions available to possibly interact with the disordered SgSrnQ in a Ni-dependent process.


Subject(s)
Gene Expression , Nickel/metabolism , Transcription Factors/metabolism , Crystallography, X-Ray , Down-Regulation , Molecular Dynamics Simulation , Protein Conformation , Structure-Activity Relationship , Transcription Factors/chemistry , Up-Regulation
7.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34049882

ABSTRACT

In sarcomeres, α-actinin cross-links actin filaments and anchors them to the Z-disk. FATZ (filamin-, α-actinin-, and telethonin-binding protein of the Z-disk) proteins interact with α-actinin and other core Z-disk proteins, contributing to myofibril assembly and maintenance. Here, we report the first structure and its cellular validation of α-actinin-2 in complex with a Z-disk partner, FATZ-1, which is best described as a conformational ensemble. We show that FATZ-1 forms a tight fuzzy complex with α-actinin-2 and propose an interaction mechanism via main molecular recognition elements and secondary binding sites. The obtained integrative model reveals a polar architecture of the complex which, in combination with FATZ-1 multivalent scaffold function, might organize interaction partners and stabilize α-actinin-2 preferential orientation in Z-disk. Last, we uncover FATZ-1 ability to phase-separate and form biomolecular condensates with α-actinin-2, raising the question whether FATZ proteins can create an interaction hub for Z-disk proteins through membraneless compartmentalization during myofibrillogenesis.

8.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918425

ABSTRACT

The results of structural studies on a series of halogen-substituted derivatives of 2-deoxy-D-glucose (2-DG) are reported. 2-DG is an inhibitor of glycolysis, a metabolic pathway crucial for cancer cell proliferation and viral replication in host cells, and interferes with D-glucose and D-mannose metabolism. Thus, 2-DG and its derivatives are considered as potential anticancer and antiviral drugs. X-ray crystallography shows that a halogen atom present at the C2 position in the pyranose ring does not significantly affect its conformation. However, it has a noticeable effect on the crystal structure. Fluorine derivatives exist as a dense 3D framework isostructural with the parent compound, while Cl- and I-derivatives form layered structures. Analysis of the Hirshfeld surface shows formation of hydrogen bonds involving the halogen, yet no indication for the existence of halogen bonds. Density functional theory (DFT) periodic calculations of cohesive and interaction energies (at the B3LYP level of theory) have supported these findings. NMR studies in the solution show that most of the compounds do not display significant differences in their anomeric equilibria, and that pyranose ring puckering is similar to the crystalline state. For 2-deoxy-2-fluoro-D-glucose (2-FG), electrostatic interaction energies between the ligand and protein for several existing structures of pyranose 2-oxidase were also computed. These interactions mostly involve acidic residues of the protein; single amino-acid substitutions have only a minor impact on binding. These studies provide a better understanding of the structural chemistry of halogen-substituted carbohydrates as well as their intermolecular interactions with proteins determining their distinct biological activity.


Subject(s)
Deoxyglucose/analogs & derivatives , Halogens/chemistry , Deoxyglucose/metabolism , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Proteins/metabolism , X-Ray Diffraction
9.
Biochemistry ; 60(17): 1347-1355, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33876640

ABSTRACT

Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.


Subject(s)
Osteopontin/chemistry , Osteopontin/metabolism , Humans , Molecular Dynamics Simulation , Phosphorylation , Protein Conformation , Protein Folding
10.
Biomol NMR Assign ; 14(2): 289-293, 2020 10.
Article in English | MEDLINE | ID: mdl-32583165

ABSTRACT

The breast cancer susceptibility protein 1 (BRCA1) plays a central role in the suppression of human breast and ovarian cancer. Germ line mutations of the BRCA1 gene are responsible for the hereditary breast and ovarian cancer (HBOC) syndrome. Here were report 1H, 13C, and 15N resonance assignments for the intrinsically disordered BRCA1 fragment 219-504, which contains important interaction sites for the proto-oncogenic transcription factor MYC as well as for p53. A nuclear magnetic resonance assignment was achieved at 18.8 T magnetic field strength using a 5D HN(CA)CONH experiment and its associated 4D H(NCA)CONH and 4D (H)N(CA)CONH experiments. 13Cα and 13Cß assignments were obtained using a 5D HabCabCONH experiment. With this strategy, 90% of 1H/15N backbone pairs could be assigned. Similarly, 264 C' resonances were assigned corresponding to 86% of the total number of C' atoms. In addition, 252 Cß resonances (i.e. 85%) were assigned, together with 461 attached Hß nuclei, as well as 264 (i.e. 86%) Cα resonances, together with 275 attached Hα nuclei.


Subject(s)
BRCA1 Protein/analysis , Carbon-13 Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy , Humans , Nitrogen Isotopes , Protein Structure, Secondary
11.
Chemistry ; 26(15): 3297-3313, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-31846102

ABSTRACT

CdII is a major genotoxic agent that readily displaces ZnII in a multitude of zinc proteins, abrogates redox homeostasis, and deregulates cellular metalloproteome. To date, this displacement has been described mostly for cysteine(Cys)-rich intraprotein binding sites in certain zinc finger domains and metallothioneins. To visualize how a ZnII -to-CdII swap can affect the target protein's status and thus understand the molecular basis of CdII -induced genotoxicity an intermolecular ZnII -binding site from the crucial DNA repair protein Rad50 and its zinc hook domain were examined. By using a length-varied peptide base, ZnII -to-CdII displacement in Rad50's hook domain is demonstrated to alter it in a bimodal fashion: 1) CdII induces around a two-orders-of-magnitude stabilization effect (log K 12 Zn II =20.8 vs. log K 12 Cd II =22.7), which defines an extremely high affinity of a peptide towards a metal ion, and 2) the displacement disrupts the overall assembly of the domain, as shown by NMR spectroscopic and anisotropy decay data. Based on the results, a new model explaining the molecular mechanism of CdII genotoxicity that underlines CdII 's impact on Rad50's dimer stability and quaternary structure that could potentially result in abrogation of the major DNA damage response pathway is proposed.


Subject(s)
Cadmium/chemistry , Metallothionein/chemistry , Zinc/chemistry , Amino Acid Sequence , DNA Damage , DNA Repair , Metallothionein/metabolism , Protein Binding , Protein Domains , Spectrum Analysis/methods , Zinc Fingers
12.
ACS Med Chem Lett ; 10(4): 450-456, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30996778

ABSTRACT

In this work we report the application of the ring-closing metathesis (RCM) to the preparation of two cyclic olefin-bridged analogues of biphalin (Tyr-d-Ala-Gly-Phe-NH-NH ← Phe ← Gly ← d-Ala ← Tyr), using the second generation Grubbs' catalyst. The resulting cis- and trans-cyclic isomers were identified, fully characterized, and tested in vitro at µ (ΜΟR), δ (DOR), and κ (KOR) opioid receptors and in vivo for antinociceptive activity. Both were shown to be full agonists at MOR and potential partial antagonists at DOR, with low potency KOR agonism. They also share a strong antinociceptive effect after intracerebroventricular (i.c.v.) and intravenous (i.v.) administration, higher than that of the cyclic biphalin analogues containing a disulfide bridge between the side chains of two d-Cys or d-Pen residues, previously described by our group.

13.
Steroids ; 143: 49-52, 2019 03.
Article in English | MEDLINE | ID: mdl-30582942

ABSTRACT

The application of 3D NMR experiments and DFT calculations enabled the structure investigation of C-17 epimer of 3-(25-hydroxycholest-5-enyl) acetate is presented. The H-17 and H-20 protons features the same values of 1H chemical shift, what causes that the structure elucidation require additional resolution enabled by 3D NMR experiments. The NMR experiments and theoretical calculations allowed for: the resonance assignment (3D COSY-HMBC and 3D TOCSY-HSQC techniques), the prediction of spatial structure (3D NOESY-HSQC and 3D ROESY-HSQC experiments), and the precise measurement of heteronuclear coupling constants (3D HSQC-TOCSY spectra with E.COSY-type multiplets).


Subject(s)
Hydroxycholesterols/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Stereoisomerism
14.
Molecules ; 23(11)2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30360468

ABSTRACT

The function of the intrinsically disordered Unique domain of the Src family of tyrosine kinases (SFK), where the largest differences between family members are concentrated, remains poorly understood. Recent studies in c-Src have demonstrated that the Unique region forms transient interactions, described as an intramolecular fuzzy complex, with the SH3 domain and suggested that similar complexes could be formed by other SFKs. Src and Lyn are members of a distinct subfamily of SFKs. Lyn is a key player in the immunologic response and exists in two isoforms originating from alternative splicing in the Unique domain. We have used NMR to compare the intramolecular interactions in the two isoforms and found that the alternatively spliced segment interacts specifically with the so-called RT-loop in the SH3 domain and that this interaction is abolished when a polyproline ligand binds to the SH3 domain. These results support the generality of the fuzzy complex formation in distinct subfamilies of SFKs and its physiological role, as the naturally occurring alternative splicing modulates the interactions in this complex.


Subject(s)
Protein Interaction Domains and Motifs , src Homology Domains , src-Family Kinases/chemistry , Amino Acid Sequence , Humans , Isoenzymes , Magnetic Resonance Spectroscopy , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship , src-Family Kinases/genetics , src-Family Kinases/metabolism
15.
J Biol Inorg Chem ; 23(8): 1309-1330, 2018 12.
Article in English | MEDLINE | ID: mdl-30264175

ABSTRACT

Helicobacter pylori HypA (HpHypA) is a metallochaperone necessary for maturation of [Ni,Fe]-hydrogenase and urease, the enzymes required for colonization and survival of H. pylori in the gastric mucosa. HpHypA contains a structural Zn(II) site and a unique Ni(II) binding site at the N-terminus. X-ray absorption spectra suggested that the Zn(II) coordination depends on pH and on the presence of Ni(II). This study was performed to investigate the structural properties of HpHypA as a function of pH and Ni(II) binding, using NMR spectroscopy combined with DFT and molecular dynamics calculations. The solution structure of apo,Zn-HpHypA, containing Zn(II) but devoid of Ni(II), was determined using 2D, 3D and 4D NMR spectroscopy. The structure suggests that a Ni-binding and a Zn-binding domain, joined through a short linker, could undergo mutual reorientation. This flexibility has no physiological effect on acid viability or urease maturation in H. pylori. Atomistic molecular dynamics simulations suggest that Ni(II) binding is important for the conformational stability of the N-terminal helix. NMR chemical shift perturbation analysis indicates that no structural changes occur in the Zn-binding domain upon addition of Ni(II) in the pH 6.3-7.2 range. The structure of the Ni(II) binding site was probed using 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals around the paramagnetic metal ion. On this basis, two possible models were derived using quantum-mechanical DFT calculations. The results provide a comprehensive picture of the Ni(II) mode to HpHypA, important to rationalize, at the molecular level, the functional interactions of this chaperone with its protein partners.


Subject(s)
Bacterial Proteins/metabolism , Helicobacter pylori/chemistry , Metallochaperones/metabolism , Nickel/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Density Functional Theory , Escherichia coli/genetics , Glycine/genetics , Hydrogen-Ion Concentration , Metallochaperones/chemistry , Metallochaperones/genetics , Models, Chemical , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Nickel/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Zinc/chemistry , Zinc/metabolism
16.
J Phys Chem A ; 122(39): 7832-7841, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30240224

ABSTRACT

1H NMR and 13C NMR chemical shifts as well as conformation dependent vicinal 1H-1H spin-spin coupling constants for cinchonidine in a dilute C6D12 solution have been measured. These data have been interpreted in detail exploiting the results of the extensive quantum chemistry calculations of molecular geometry and NMR parameters of the molecule, performed using the density functional theory (DFT) B3LYP/6-311++G(2d,p) polarizable continuum model (PCM) level of theory. The experimental values of NMR parameters for cinchonidine have been reproduced very well in terms of parameters calculated for key conformers of this molecule. Simultaneously, the analysis has provided us with a lot of information on conformational equilibrium of cinchonidine in the investigated solution. These findings remain in general agreement with the conclusions of other works, based on NOESY spectra or other physicochemical data. Thus, a careful quantitative interpretation of easily measurable NMR chemical shifts can be an independent and valuable source of structural information even in such complex cases as cinchonidine in solution.

17.
J Biomol NMR ; 71(2): 101-114, 2018 06.
Article in English | MEDLINE | ID: mdl-29948440

ABSTRACT

The NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled 13C,15N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution. The analysis of the experimental data of diffusion measurements, using the direct exponential curve resolution algorithm (DECRA) allows suggesting the two main components of the oligomeric ensemble. The 3D HSQC-iDOSY, (diffusion ordered HSQC) experiments performed on 13C, 15N-fully labeled insulin at the two pH values, 4 and 7.5, allow for the first time a more detailed experimental observation of individual components in the ensemble. The discussion involves earlier static and dynamic laser light scattering experiments and recent NMR derived translational diffusion results. The results bring new informations concerning the preparation of pharmaceutical formulation and in particular a role of Zn2+ ions. They also will enable better understanding and unifying the results of studies on insulin misfolding effects performed in solution by diverse physicochemical methods at different pH and concentration.


Subject(s)
Insulin/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Aggregates , Diffusion , Humans , Ligands , Protein Folding , Zinc/chemistry
18.
Methods ; 148: 81-87, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29705209

ABSTRACT

Intrinsically disordered proteins (IDPs) are getting more and more interest of the scientific community. Nuclear magnetic resonance (NMR) is often a technique of choice for these studies, as it provides atomic-resolution information on structure, dynamics and interactions of IDPs. Nonetheless, NMR spectra of IDPs are typically extraordinary crowded, comparing to those of structured proteins. To overcome this problem, high-dimensional NMR experiments can be used, which allow for a better peak separation. In the present review different aspects of such experiments are discussed, from data acquisition and processing to analysis, focusing on experiments for resonance assignment.


Subject(s)
Intrinsically Disordered Proteins/analysis , Intrinsically Disordered Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation
19.
J Biomol NMR ; 68(2): 155-161, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28508110

ABSTRACT

NMR relaxometry plays crucial role in studies of protein dynamics. The measurement of longitudinal and transverse relaxation rates of [Formula: see text]N is the main source of information on backbone motions. However, even the most basic approach exploiting a series of [Formula: see text]N HSQC spectra can require several hours of measurement time. Standard non-uniform sampling (NUS), i.e. random under-sampling of indirect time domain, typically cannot reduce this by more than 2-4[Formula: see text] due to relatively low "compressibility" of these spectra. In this paper we propose an extension of NUS to relaxation delays. The two-dimensional space of [Formula: see text]/[Formula: see text] is sampled in a way similar to NUS of [Formula: see text]/[Formula: see text] domain in 3D spectra. The signal is also processed in a way similar to that known from 3D NUS spectra i.e. using one of the most popular compressed sensing algorithms, iterative soft thresholding. The 2D Fourier transform matrix is replaced with mixed inverse Laplace-Fourier transform matrix. The peak positions in resulting 3D spectrum are characterized by two frequency coordinates and relaxation rate and thus no additional fitting of exponential curves is required. The method is tested on three globular proteins, providing satisfactory results in a time corresponding to acquisition of two conventional [Formula: see text]N HSQC spectra.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Fourier Analysis , Humans , Isotope Labeling , Time Factors , Ubiquitin/chemistry , src Homology Domains
20.
Plant Cell ; 29(6): 1184-1195, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28522546

ABSTRACT

When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. However, the precise role of this motif in the host cell translocation process is unclear. Here, detailed biochemical studies of the RxLR effector AVR3a from the potato pathogen Phytophthora infestans are presented. Mass spectrometric analysis revealed that the RxLR sequence of native AVR3a is cleaved off prior to secretion by the pathogen and the N terminus of the mature effector was found likely to be acetylated. High-resolution NMR structure analysis of AVR3a indicates that the RxLR motif is well accessible to potential processing enzymes. Processing and modification of AVR3a is to some extent similar to events occurring with the export element (PEXEL) found in malaria effector proteins from Plasmodium falciparum These findings imply a role for the RxLR motif in the secretion of AVR3a by the pathogen, rather than a direct role in the host cell entry process itself.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Phytophthora infestans/metabolism , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , Fungal Proteins/genetics , Mass Spectrometry , Phytophthora infestans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...