Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 14236, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34244596

ABSTRACT

In this paper, we present the approach to complete Bell state analysis based on filtering mapping. The key distinctive feature of this appoach is that it avoids complications related to using either hyperentanglement or representation of the Bell states as concatenated Greenber-Horne-Zeilinger (C-GHZ) state to perform discrimination procedure. We describe two techniques developed within the suggested approach and based on two-step algorithms with two different types of filtration mapping which can be called the non-demolition and semi-demolition filtrations. In the method involving non-demolition filtration measurement the filtration process employs cross-Kerr nonlinearity and the probe mode to distinguish between the two pairs of the Bell states. In the case of semi-demolition measurement, the two states are unambiguously discriminated and hence destroyed, whereas filtraton keeps the other two states intact. We show that the measurement that destroys the single photon subspace in every mode and preserves the superposition of zero and two photons can be realized with discrete photodetection based on microresonator with atoms.

2.
Opt Express ; 28(19): 28696-28712, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32988135

ABSTRACT

In this paper we investigate the chromatic dispersion impact on the quantum key distribution system based on multi-mode weak coherent phase-coded states. We provide an asymptotic secure key rate estimation, taking into account error detection probability due to chromatic dispersion. We demonstrate numerically and experimentally that the effect of chromatic dispersion in an optical fiber without any compensation hinders the secret key distribution at a distance more than 53 km. Finally, we propose a modification to the considered quantum communication system in order to mitigate the influence of chromatic dispersion on its performance.

3.
Sci Rep ; 10(1): 10034, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32572271

ABSTRACT

In this paper we report a continuous-variable quantum key distribution protocol using multimode coherent states generated on subcarrier frequencies of the optical spectrum. We propose a coherent detection scheme where power from a carrier wave is used as a local oscillator. We compose a mathematical model of the proposed scheme and perform its security analysis in the finite-size regime using fully quantum asymptotic equipartition property technique. We calculate a lower bound on the secret key rate for the system under the assumption that the quantum channel noise is negligible compared to detector dark counts, and an eavesdropper is restricted to collective attacks. Our calculation shows that the current realistic system implementation would allow distributing secret keys over channels with losses up to 9 dB.

4.
Opt Express ; 27(25): 36551-36561, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873431

ABSTRACT

In this paper we propose feasibility demonstration of twin-field quantum key ditribution system based on multi-mode weak coherent phase-coded states. Their utilization provides indisputable advantages described in the paper. We also provide the detailed description of nontrivial interference scheme for those states and derive detection and quantum bit error rates. Since we propose the feasibility scheme we present in this paper only asymptotic secure key estimation and show that in principle it can beat well-known fundamental limit of repeaterless quantum communications , i.e., the secret key capacity of the lossy communication channel. Also we present here the experimental setup and provide the experimental values of detection rates dependence on the modulation signals phase difference.

5.
Opt Express ; 26(9): 11292-11308, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716053

ABSTRACT

We consider a subcarrier wave quantum key distribution (QKD) system, where quantum encoding is carried out at weak sidebands generated around a coherent optical beam as a result of electro-optical phase modulation. We study security of two protocols, B92 and BB84, against one of the most powerful attacks for this class of systems, the collective beam-splitting attack. Our analysis includes the case of high modulation index, where the sidebands are essentially multimode. We demonstrate numerically and experimentally that a subcarrier wave QKD system with realistic parameters is capable of distributing cryptographic keys over large distances in presence of collective attacks. We also show that BB84 protocol modification with discrimination of only one state in each basis performs not worse than the original BB84 protocol in this class of QKD systems, thus significantly simplifying the development of cryptographic networks using the considered QKD technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...