Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 116(6): 1022-1031, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27604259

ABSTRACT

Antithrombin (AT) and thrombomodulin (TM) play important roles in the process of natural anticoagulation in vivo. Recently, we reported that the prothrombin Yukuhashi mutation (p.Arg596Leu) was associated with AT and TM resistance-related thrombophilia. To assess the AT and TM resistances associated with other missense mutations by single base substitution in the Arg596 codon, we generated recombinant variants (596Gln, 596Trp, 596Gly, and 596Pro) and investigated the effects on AT and TM anticoagulant functions. All variants except 596Pro were secreted in amounts comparable to that of the wild-type but exhibited variable procoagulant activities. After a 30-minute inactivation by AT, the relative residual activity of wild-type thrombin decreased to 15 ± 4.0 %, in contrast to values of all variants were maintained at above 80 %. The thrombin-AT complex formation, as determined by enzyme-linked immunosorbent assay, was reduced with all tested variants in the presence and absence of heparin. In the presence of soluble TM (sTM), the relative fibrinogen clotting activity of wild-type thrombin decreased to 16 ± 0.12 %, whereas that of tested variants was 37 %-56 %. In a surface plasmon resonance assay, missense Arg596 mutations reduced thrombin-TM affinity to an extent similar to the reduction of fibrinogen clotting inhibition. In the presence of sTM or cultured endothelial-like cells, APC generation was enhanced differently by variant thrombins in a thrombin-TM affinity-dependent manner. These data indicate that prothrombin Arg596 missense mutations lead to AT and TM resistance in the variant thrombins and suggest that prothrombin Arg596 is important for AT- and TM-mediated anticoagulation.


Subject(s)
Antithrombins/physiology , Mutation, Missense , Prothrombin/genetics , Thrombomodulin/physiology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Thrombin/physiology
2.
Thromb Res ; 145: 40-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27447084

ABSTRACT

INTRODUCTION: Use of combined oral contraceptives (COCs) results in acquired protein S (PS) deficiency, a well-established risk factor for venous thromboembolism (VTE). The risk of VTE due to COCs containing newer-generation progestins is double compared with COCs containing older-generation progestins, although there is little difference in estrogen contents between the generations. In contrast, progestin-only contraceptives do not confer an increased risk of VTE. In this study, we aimed to investigate how different isoforms of progestin in COCs affect the risk of VTE by measuring PS expression. MATERIALS AND METHODS: The effect of progestin, levonorgestrel (LNG) or drospirenone (DRSP), on PS mRNA expression in HepG2 cells was measured using reverse transcription-quantitative PCR; PS level was determined using Western blot analysis. PROS1 promoter activity, PS mRNA stability, and de novo synthesis of PS mRNA were examined in HepG2 cells after treatment with progestin. RESULTS AND CONCLUSIONS: In the presence of progestins, PS mRNA and protein expressions were significantly upregulated in HepG2 cells due to the augmentation of de novo PS mRNA expression modulated by RNA polymerase II (Pol II), thereby facilitating PS transcription elongation. Moreover, the transcription elongation inhibitor blocked progestin-mediated de novo PS mRNA expression. Conversely, progestin did not affect PROS1 promoter activity and PS mRNA stability. Pol II elongation efficiency in the newer-generation progestin (DRSP) treatment was not as strong compared with older-generation progestin (LNG), suggesting the difference in VTE risk between COC generations.


Subject(s)
Progestins/adverse effects , Protein Isoforms/metabolism , Protein S/metabolism , Venous Thromboembolism/chemically induced , Hep G2 Cells , Humans , Risk Factors
3.
Int J Hematol ; 102(1): 134-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25739383

ABSTRACT

Hemophilia B is an X-linked recessive bleeding disorder caused by abnormalities of the coagulation factor IX gene (F9). Insertion mutations in F9 ranging from a few to more than 100 base pairs account for only a few percent of all hemophilia B cases. We investigated F9 to elucidate genetic abnormalities causing severe hemophilia B in a Japanese subject. We performed PCR-mediated analysis of F9 and identified a large insertion in exon 6. Next, we carried out direct sequencing of a PCR clone of the whole insert using nested deletion by exonuclease III and S1 nuclease. We identified an approximately 2.5-kb SINE-VNTR-Alu (SVA)-F element flanked by 15-bp duplications in the antisense orientation in exon 6. Additionally, we carried out exontrap analysis to assess the effect of this retrotransposition on mRNA splicing. We observed that regular splicing at exons 5 and 6 of F9 was disturbed by the SVA retrotransposition, suggesting that abnormal FIX mRNA may be reduced by nonsense-mediated mRNA decay. In conclusion, this is the first report of SVA retrotransposition causing severe hemophilia B; only five cases of LINE-1 or Alu retrotranspositions in F9 have been reported previously.


Subject(s)
Exons , Factor IX/genetics , Hemophilia B/diagnosis , Hemophilia B/genetics , Retroelements , Alternative Splicing , Alu Elements , Genetic Association Studies , Humans , Infant , Male , Minisatellite Repeats , Polymerase Chain Reaction , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...