Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337313

ABSTRACT

Bending is one of the dominant material deformation mechanisms that occurs during the forming process of unidirectional (UD) thermoplastic tapes. Experimental characterization of the bending behavior at processing temperatures is crucial to obtaining close-to-reality data sets for process analysis or material modeling for process simulation. The main purpose of this study is to characterize to a high degree of accuracy the temperature-dependent bending behavior of single and multi-ply specimens of carbon fiber-reinforced polycarbonate (PC/CF) UD tapes at processing temperatures, which implies a molten state of the thermoplastic matrix. The application of the rotation bending test using a customized fixture may come with systematic deviations in the measured moment that result from a pivot offset or an effective clearance that is unknown under realistic test conditions. The present research analyzes these effects with analytical methods, experimental investigations, and simulations using a finite element model. In this context, a compensation method for the toe-in effect is evaluated. With this approach, we were able to obtain reliable data and characterize the bending resistance within the desired processing window. The data reveal a major drop in bending resistance between 200 °C and 250 °C and a less significant decrease between 250 °C and 300 °C. Analysis of the thickness-normalized bending resistances indicates a non-linear relationship between specimen thickness and measured moment but an increasing shear-dominated characteristic at higher temperatures.

2.
ACS Polym Au ; 4(1): 56-65, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38371734

ABSTRACT

Due to their unique rheological and mechanical properties, bottlebrush polymers are inimitable components of biological and synthetic systems such as cartilage and ultrasoft elastomers. However, while their rheological properties can be precisely controlled through their macromolecular structures, the current chemical spectrum available is limited to a handful of synthetic polymers with aliphatic carbon backbones. Herein we design and synthesize a series of inorganic bottlebrush polymers based on a unique combination of polydimethylsiloxane (PDMS) and polyphosphazene (PPz) chemistry. This non-carbon-based platform allows for simple variation of the significant architectural dimensions of bottlebrush-polymer-based elastomers. Grafting PDMS to PPz and vice versa also allows us to further exploit the unique properties of these polymers combined in a single material. These novel hybrid bottlebrush polymers were cured to give supersoft, solvent-free elastomers. We systematically studied the effect of architectural parameters and chemical functionality on their rheological properties. Besides forming supersoft elastomers, the energy dissipation characteristics of the elastomers were observed to be considerably higher than those for PDMS-based elastomers. Hence this work introduces a robust synthetic platform for solvent-free supersoft elastomers with potential applications as biomimetic damping materials.

3.
Gels ; 9(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37504469

ABSTRACT

Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.

4.
Polymers (Basel) ; 13(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34685341

ABSTRACT

Rheological properties of electrode slurries have been intensively studied for manifold different combinations of active materials and binders. Standardly, solvent-based systems are under use, but a trend towards water-based electrode manufacturing is becoming more and more important. The different solvent is beneficial in terms of sustainability and process safety but is also accompanied by some disadvantages such as extraction of residual humidity and a higher complexity concerning slurry stability. Li4Ti5O12 (LTO) active material provides good long-term stability and can be processed in aqueous solutions. Combining the LTO active material with sodium alginate (SA) as a promising biobased polymer binder reveals good electrochemical properties but suffers from bad slurry stability. In this work, we present a comprehensive rheological study on material interactions in anode slurries consisting of LTO and SA, based on a complex interaction of differentially sized materials. The use of two different surfactants-namely, an anionic and non-ionic one, to enhance slurry stability, compared with surfactant-free slurry.

SELECTION OF CITATIONS
SEARCH DETAIL
...